@@ -25,13 +25,13 @@ The documentation for `seeded_region_growing` says that it needs two arguments -
25
25
``` julia
26
26
using Images, ImageView
27
27
28
- img = load (" src/packages/imagesegmentation /assets/horse.jpg" )
28
+ img = load (" src/pkgs/segmentation /assets/horse.jpg" )
29
29
imshow (img)
30
30
```
31
31
32
32
Hover over the different objects you'd like to segment, and read out the coordinates of one or more points inside each object. We will store the seed points as a vector of ` (seed position, label) ` tuples and use ` seeded_region_growing ` with the recorded seed points.
33
33
34
- ``` jldoctest; setup = :(using Images; img = load("src/packages/imagesegmentation /assets/horse.jpg")), filter = r"\\ s"
34
+ ``` jldoctest; setup = :(using Images; img = load("src/pkgs/segmentation /assets/horse.jpg")), filter = r"\\ s"
35
35
using ImageSegmentation
36
36
seeds = [(CartesianIndex(126,81),1), (CartesianIndex(93,255),2), (CartesianIndex(213,97),3)]
37
37
segments = seeded_region_growing(img, seeds)
@@ -50,7 +50,7 @@ All the segmentation algorithms (except Fuzzy C-means) return a struct `Segmente
50
50
``` @meta
51
51
DocTestSetup = quote
52
52
using Images, ImageSegmentation
53
- img = load("src/packages/imagesegmentation /assets/horse.jpg")
53
+ img = load("src/pkgs/segmentation /assets/horse.jpg")
54
54
seeds = [(CartesianIndex(126,81),1), (CartesianIndex(93,255),2), (CartesianIndex(213,97),3)]
55
55
segments = seeded_region_growing(img, seeds)
56
56
end
@@ -96,7 +96,7 @@ Now let's segment this image using felzenszwalb algorithm. `felzenswalb` only ne
96
96
``` jldoctest
97
97
julia> using Images, ImageSegmentation
98
98
99
- julia> img = load("src/packages/imagesegmentation /assets/horse.jpg");
99
+ julia> img = load("src/pkgs/segmentation /assets/horse.jpg");
100
100
101
101
julia> segments = felzenszwalb(img, 100)
102
102
Segmented Image with:
@@ -184,7 +184,7 @@ If more than one point has the same label then they will be contribute to the sa
184
184
``` jldoctest
185
185
julia> using Images, ImageSegmentation
186
186
187
- julia> img = load("src/packages/imagesegmentation /assets/worm.jpg");
187
+ julia> img = load("src/pkgs/segmentation /assets/worm.jpg");
188
188
189
189
julia> seeds = [(CartesianIndex(104, 48), 1), (CartesianIndex( 49, 40), 1),
190
190
(CartesianIndex( 72,131), 1), (CartesianIndex(109,217), 1),
@@ -237,7 +237,7 @@ all the pixels have been assigned to some region.
237
237
``` jldoctest
238
238
julia> using ImageSegmentation, Images
239
239
240
- julia> img = load("src/packages/imagesegmentation /assets/tree.jpg");
240
+ julia> img = load("src/pkgs/segmentation /assets/tree.jpg");
241
241
242
242
julia> seg = unseeded_region_growing(img, 0.05) # here 0.05 is the threshold
243
243
Segmented Image with:
@@ -404,7 +404,7 @@ number of clusters and ``iter`` is the number of iterations.
404
404
``` jldoctest; filter=r"converged in [0-9]+ iterations"
405
405
julia> using ImageSegmentation, Images
406
406
407
- julia> img = load("src/packages/imagesegmentation /assets/flower.jpg");
407
+ julia> img = load("src/pkgs/segmentation /assets/flower.jpg");
408
408
409
409
julia> r = fuzzy_cmeans(img, 3, 2)
410
410
FuzzyCMeansResult: 3 clusters for 135360 points in 3 dimensions (converged in 27 iterations)
0 commit comments