|
| 1 | +# --- |
| 2 | +# cover: assets/contour_detection.png |
| 3 | +# title: Contour Detection and Drawing |
| 4 | +# --- |
| 5 | + |
| 6 | +# This demonstration shows how to detect contours on binary images |
| 7 | +# The algorithm used is ["Topological Structural Analysis of Digitized Binary Images |
| 8 | +# by Border Following"](https://www.sciencedirect.com/science/article/pii/0734189X85900167) by Suzuki and Abe (Same as OpenCV).# |
| 9 | + |
| 10 | +# Points are represented using CartesianIndex. Contours are represented as a vector of Points. |
| 11 | +# Direction is a single number between 1 to 8. Steps inside functions are marked as they are in the original paper |
| 12 | + |
| 13 | +using Images, TestImages, FileIO |
| 14 | + |
| 15 | +## N NE E SE S SW W NW |
| 16 | +## direction between two pixels |
| 17 | + |
| 18 | +## rotate direction clocwise |
| 19 | +function clockwise(dir) |
| 20 | + return (dir)%8 + 1 |
| 21 | +end |
| 22 | + |
| 23 | +## rotate direction counterclocwise |
| 24 | +function counterclockwise(dir) |
| 25 | + return (dir+6)%8 + 1 |
| 26 | +end |
| 27 | + |
| 28 | +## move from current pixel to next in given direction |
| 29 | +function move(pixel, image, dir, dir_delta) |
| 30 | + newp = pixel + dir_delta[dir] |
| 31 | + height, width = size(image) |
| 32 | + if (0 < newp[1] <= height) && (0 < newp[2] <= width) |
| 33 | + if image[newp]!=0 |
| 34 | + return newp |
| 35 | + end |
| 36 | + end |
| 37 | + return CartesianIndex(0, 0) |
| 38 | +end |
| 39 | + |
| 40 | +## finds direction between two given pixels |
| 41 | +function from_to(from, to, dir_delta) |
| 42 | + delta = to-from |
| 43 | + return findall(x->x == delta, dir_delta)[1] |
| 44 | +end |
| 45 | + |
| 46 | + |
| 47 | + |
| 48 | +function detect_move(image, p0, p2, nbd, border, done, dir_delta) |
| 49 | + dir = from_to(p0, p2, dir_delta) |
| 50 | + moved = clockwise(dir) |
| 51 | + p1 = CartesianIndex(0, 0) |
| 52 | + while moved != dir ## 3.1 |
| 53 | + newp = move(p0, image, moved, dir_delta) |
| 54 | + if newp[1]!=0 |
| 55 | + p1 = newp |
| 56 | + break |
| 57 | + end |
| 58 | + moved = clockwise(moved) |
| 59 | + end |
| 60 | + |
| 61 | + if p1 == CartesianIndex(0, 0) |
| 62 | + return |
| 63 | + end |
| 64 | + |
| 65 | + p2 = p1 ## 3.2 |
| 66 | + p3 = p0 ## 3.2 |
| 67 | + done .= false |
| 68 | + while true |
| 69 | + dir = from_to(p3, p2, dir_delta) |
| 70 | + moved = counterclockwise(dir) |
| 71 | + p4 = CartesianIndex(0, 0) |
| 72 | + done .= false |
| 73 | + while true ## 3.3 |
| 74 | + p4 = move(p3, image, moved, dir_delta) |
| 75 | + if p4[1] != 0 |
| 76 | + break |
| 77 | + end |
| 78 | + done[moved] = true |
| 79 | + moved = counterclockwise(moved) |
| 80 | + end |
| 81 | + push!(border, p3) ## 3.4 |
| 82 | + if p3[1] == size(image, 1) || done[3] |
| 83 | + image[p3] = -nbd |
| 84 | + elseif image[p3] == 1 |
| 85 | + image[p3] = nbd |
| 86 | + end |
| 87 | + |
| 88 | + if (p4 == p0 && p3 == p1) ## 3.5 |
| 89 | + break |
| 90 | + end |
| 91 | + p2 = p3 |
| 92 | + p3 = p4 |
| 93 | + end |
| 94 | +end |
| 95 | + |
| 96 | + |
| 97 | +function find_contours(image) |
| 98 | + nbd = 1 |
| 99 | + lnbd = 1 |
| 100 | + image = convert(Array{Float64}, image) |
| 101 | + contour_list = Vector{typeof(CartesianIndex[])}() |
| 102 | + done = [false, false, false, false, false, false, false, false] |
| 103 | + |
| 104 | + ## Clockwise Moore neighborhood. |
| 105 | + dir_delta = [CartesianIndex(-1, 0) , CartesianIndex(-1, 1), CartesianIndex(0, 1), CartesianIndex(1, 1), CartesianIndex(1, 0), CartesianIndex(1, -1), CartesianIndex(0, -1), CartesianIndex(-1,-1)] |
| 106 | + |
| 107 | + height, width = size(image) |
| 108 | + |
| 109 | + for i=1:height |
| 110 | + lnbd = 1 |
| 111 | + for j=1:width |
| 112 | + fji = image[i, j] |
| 113 | + is_outer = (image[i, j] == 1 && (j == 1 || image[i, j-1] == 0)) ## 1 (a) |
| 114 | + is_hole = (image[i, j] >= 1 && (j == width || image[i, j+1] == 0)) |
| 115 | + |
| 116 | + if is_outer || is_hole |
| 117 | + ## 2 |
| 118 | + border = CartesianIndex[] |
| 119 | + |
| 120 | + from = CartesianIndex(i, j) |
| 121 | + |
| 122 | + if is_outer |
| 123 | + nbd += 1 |
| 124 | + from -= CartesianIndex(0, 1) |
| 125 | + |
| 126 | + else |
| 127 | + nbd += 1 |
| 128 | + if fji > 1 |
| 129 | + lnbd = fji |
| 130 | + end |
| 131 | + from += CartesianIndex(0, 1) |
| 132 | + end |
| 133 | + |
| 134 | + p0 = CartesianIndex(i,j) |
| 135 | + detect_move(image, p0, from, nbd, border, done, dir_delta) ## 3 |
| 136 | + if isempty(border) ##TODO |
| 137 | + push!(border, p0) |
| 138 | + image[p0] = -nbd |
| 139 | + end |
| 140 | + push!(contour_list, border) |
| 141 | + end |
| 142 | + if fji != 0 && fji != 1 |
| 143 | + lnbd = abs(fji) |
| 144 | + end |
| 145 | + |
| 146 | + end |
| 147 | + end |
| 148 | + |
| 149 | + return contour_list |
| 150 | + |
| 151 | + |
| 152 | +end |
| 153 | + |
| 154 | +## a contour is a vector of 2 int arrays |
| 155 | +function draw_contour(image, color, contour) |
| 156 | + for ind in contour |
| 157 | + image[ind] = color |
| 158 | + end |
| 159 | +end |
| 160 | +function draw_contours(image, color, contours) |
| 161 | + for cnt in contours |
| 162 | + draw_contour(image, color, cnt) |
| 163 | + end |
| 164 | +end |
| 165 | + |
| 166 | +## load images |
| 167 | +img1 = testimage("mandrill") |
| 168 | +img2 = testimage("lighthouse") |
| 169 | + |
| 170 | +## convert to grayscale |
| 171 | +imgg1 = Gray.(img1) |
| 172 | +imgg2 = Gray.(img2) |
| 173 | + |
| 174 | +## threshold |
| 175 | +imgg1 = imgg1 .> 0.45 |
| 176 | +imgg2 = imgg2 .> 0.45 |
| 177 | + |
| 178 | +## calling find_contours |
| 179 | +cnts1 = find_contours(imgg1) |
| 180 | +cnts2 = find_contours(imgg2) |
| 181 | + |
| 182 | +img3 = copy(img1) |
| 183 | +img4 = copy(img2) |
| 184 | + |
| 185 | +## finally, draw the detected contours |
| 186 | +draw_contours(img3, RGB(1,0,0), cnts1) |
| 187 | +draw_contours(img4, RGB(1,0,0), cnts2) |
| 188 | + |
| 189 | + |
| 190 | +vcat([img1 img2], [img3 img4]) |
| 191 | + |
| 192 | +save("assets/contour_detection.png", img3) #src |
0 commit comments