3131    eigen(A::Union{Hermitian, Symmetric}; alg::LinearAlgebra.Algorithm = LinearAlgebra.default_eigen_alg(A)) -> Eigen 
3232
3333Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F` 
34- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the 
34+ which contains the eigenvalues in `F.values` and the orthonormal  eigenvectors in the columns of the 
3535matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.) 
3636
3737Iterating the decomposition produces the components `F.values` and `F.vectors`. 
@@ -76,7 +76,7 @@ eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRange)
7676    eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen 
7777
7878Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F` 
79- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the 
79+ which contains the eigenvalues in `F.values` and the orthonormal  eigenvectors in the columns of the 
8080matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.) 
8181
8282Iterating the decomposition produces the components `F.values` and `F.vectors`. 
@@ -101,7 +101,7 @@ eigen!(A::RealHermSymComplexHerm{T,<:StridedMatrix}, vl::Real, vh::Real) where {
101101    eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen 
102102
103103Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F` 
104- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the 
104+ which contains the eigenvalues in `F.values` and the orthonormal  eigenvectors in the columns of the 
105105matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.) 
106106
107107Iterating the decomposition produces the components `F.values` and `F.vectors`. 
0 commit comments