@@ -10,9 +10,9 @@ eigencopy_oftype(A::Symmetric{<:Complex}, S) = copyto!(similar(parent(A), S), A)
1010 default_eigen_alg(A)
1111
1212Return the default algorithm used to solve the eigensystem `A v = λ v` for a symmetric matrix `A`.
13- Defaults to `LinearAlegbra.DivideAndConquer ()`, which corresponds to the LAPACK function `LAPACK.syevd !`.
13+ Defaults to `LinearAlegbra.RobustRepresentations ()`, which corresponds to the LAPACK function `LAPACK.syevr !`.
1414"""
15- default_eigen_alg (@nospecialize (A)) = DivideAndConquer ()
15+ default_eigen_alg (@nospecialize (A)) = RobustRepresentations ()
1616
1717# Eigensolvers for symmetric and Hermitian matrices
1818function eigen! (A:: RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix} ; alg:: Algorithm = default_eigen_alg (A), sortby:: Union{Function,Nothing} = nothing )
@@ -37,9 +37,9 @@ matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vec
3737Iterating the decomposition produces the components `F.values` and `F.vectors`.
3838
3939`alg` specifies which algorithm and LAPACK method to use for eigenvalue decomposition:
40- - `alg = DivideAndConquer()` (default) : Calls `LAPACK.syevd!`.
40+ - `alg = DivideAndConquer()`: Calls `LAPACK.syevd!`.
4141- `alg = QRIteration()`: Calls `LAPACK.syev!`.
42- - `alg = RobustRepresentations()`: Multiple relatively robust representations method, Calls `LAPACK.syevr!`.
42+ - `alg = RobustRepresentations()` (default) : Multiple relatively robust representations method, Calls `LAPACK.syevr!`.
4343
4444See James W. Demmel et al, SIAM J. Sci. Comput. 30, 3, 1508 (2008) for
4545a comparison of the accuracy and performance of different algorithms.
0 commit comments