3131 eigen(A::Union{Hermitian, Symmetric}; alg::LinearAlgebra.Algorithm = LinearAlgebra.default_eigen_alg(A)) -> Eigen
3232
3333Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
34- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
34+ which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the
3535matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
3636
3737Iterating the decomposition produces the components `F.values` and `F.vectors`.
@@ -76,7 +76,7 @@ eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRange)
7676 eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen
7777
7878Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
79- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
79+ which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the
8080matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
8181
8282Iterating the decomposition produces the components `F.values` and `F.vectors`.
@@ -101,7 +101,7 @@ eigen!(A::RealHermSymComplexHerm{T,<:StridedMatrix}, vl::Real, vh::Real) where {
101101 eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen
102102
103103Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
104- which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
104+ which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the
105105matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
106106
107107Iterating the decomposition produces the components `F.values` and `F.vectors`.
0 commit comments