diff --git a/src/eigen.jl b/src/eigen.jl index e0124f2e..0837491a 100644 --- a/src/eigen.jl +++ b/src/eigen.jl @@ -182,7 +182,7 @@ end eigen(A; permute::Bool=true, scale::Bool=true, sortby) -> Eigen Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F` -which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the +which contains the eigenvalues in `F.values` and the normalized eigenvectors in the columns of the matrix `F.vectors`. This corresponds to solving an eigenvalue problem of the form `Ax = λx`, where `A` is a matrix, `x` is an eigenvector, and `λ` is an eigenvalue. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.) diff --git a/src/symmetriceigen.jl b/src/symmetriceigen.jl index 7a01cd8c..f164c41c 100644 --- a/src/symmetriceigen.jl +++ b/src/symmetriceigen.jl @@ -31,7 +31,7 @@ end eigen(A::Union{Hermitian, Symmetric}; alg::LinearAlgebra.Algorithm = LinearAlgebra.default_eigen_alg(A)) -> Eigen Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F` -which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the +which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.) Iterating the decomposition produces the components `F.values` and `F.vectors`. @@ -76,7 +76,7 @@ eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRange) eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F` -which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the +which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.) Iterating the decomposition produces the components `F.values` and `F.vectors`. @@ -101,7 +101,7 @@ eigen!(A::RealHermSymComplexHerm{T,<:StridedMatrix}, vl::Real, vh::Real) where { eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen Compute the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F` -which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the +which contains the eigenvalues in `F.values` and the orthonormal eigenvectors in the columns of the matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.) Iterating the decomposition produces the components `F.values` and `F.vectors`.