Skip to content

Commit 5a922fa

Browse files
authored
improve cat design / performance (#49322)
This used to make a lot of references to design issues with the SparseArrays package (#2326 / #20815), which result in a non-sensical dispatch arrangement, and contribute to a slow loading experience do to the nonsense Unions that must be checked by subtyping.
1 parent dcca46b commit 5a922fa

File tree

10 files changed

+63
-95
lines changed

10 files changed

+63
-95
lines changed

base/abstractarray.jl

Lines changed: 24 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -1651,7 +1651,7 @@ function _typed_hcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T
16511651
for j = 1:nargs
16521652
Aj = A[j]
16531653
if size(Aj, 1) != nrows
1654-
throw(ArgumentError("number of rows of each array must match (got $(map(x->size(x,1), A)))"))
1654+
throw(DimensionMismatch("number of rows of each array must match (got $(map(x->size(x,1), A)))"))
16551655
end
16561656
dense &= isa(Aj,Array)
16571657
nd = ndims(Aj)
@@ -1686,7 +1686,7 @@ function _typed_vcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T
16861686
ncols = size(A[1], 2)
16871687
for j = 2:nargs
16881688
if size(A[j], 2) != ncols
1689-
throw(ArgumentError("number of columns of each array must match (got $(map(x->size(x,2), A)))"))
1689+
throw(DimensionMismatch("number of columns of each array must match (got $(map(x->size(x,2), A)))"))
16901690
end
16911691
end
16921692
B = similar(A[1], T, nrows, ncols)
@@ -1984,16 +1984,14 @@ julia> cat(1, [2], [3;;]; dims=Val(2))
19841984

19851985
# The specializations for 1 and 2 inputs are important
19861986
# especially when running with --inline=no, see #11158
1987-
# The specializations for Union{AbstractVecOrMat,Number} are necessary
1988-
# to have more specialized methods here than in LinearAlgebra/uniformscaling.jl
19891987
vcat(A::AbstractArray) = cat(A; dims=Val(1))
19901988
vcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(1))
19911989
vcat(A::AbstractArray...) = cat(A...; dims=Val(1))
1992-
vcat(A::Union{AbstractVecOrMat,Number}...) = cat(A...; dims=Val(1))
1990+
vcat(A::Union{AbstractArray,Number}...) = cat(A...; dims=Val(1))
19931991
hcat(A::AbstractArray) = cat(A; dims=Val(2))
19941992
hcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(2))
19951993
hcat(A::AbstractArray...) = cat(A...; dims=Val(2))
1996-
hcat(A::Union{AbstractVecOrMat,Number}...) = cat(A...; dims=Val(2))
1994+
hcat(A::Union{AbstractArray,Number}...) = cat(A...; dims=Val(2))
19971995

19981996
typed_vcat(T::Type, A::AbstractArray) = _cat_t(Val(1), T, A)
19991997
typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = _cat_t(Val(1), T, A, B)
@@ -2055,8 +2053,8 @@ julia> hvcat((2,2,2), a,b,c,d,e,f) == hvcat(2, a,b,c,d,e,f)
20552053
true
20562054
```
20572055
"""
2058-
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat...) = typed_hvcat(promote_eltype(xs...), rows, xs...)
2059-
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat{T}...) where {T} = typed_hvcat(T, rows, xs...)
2056+
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractArray...) = typed_hvcat(promote_eltype(xs...), rows, xs...)
2057+
hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractArray{T}...) where {T} = typed_hvcat(T, rows, xs...)
20602058

20612059
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as::AbstractVecOrMat...) where T
20622060
nbr = length(rows) # number of block rows
@@ -2084,16 +2082,16 @@ function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as::AbstractVecOrMat..
20842082
Aj = as[a+j-1]
20852083
szj = size(Aj,2)
20862084
if size(Aj,1) != szi
2087-
throw(ArgumentError("mismatched height in block row $(i) (expected $szi, got $(size(Aj,1)))"))
2085+
throw(DimensionMismatch("mismatched height in block row $(i) (expected $szi, got $(size(Aj,1)))"))
20882086
end
20892087
if c-1+szj > nc
2090-
throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1+szj))"))
2088+
throw(DimensionMismatch("block row $(i) has mismatched number of columns (expected $nc, got $(c-1+szj))"))
20912089
end
20922090
out[r:r-1+szi, c:c-1+szj] = Aj
20932091
c += szj
20942092
end
20952093
if c != nc+1
2096-
throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1))"))
2094+
throw(DimensionMismatch("block row $(i) has mismatched number of columns (expected $nc, got $(c-1))"))
20972095
end
20982096
r += szi
20992097
a += rows[i]
@@ -2115,7 +2113,7 @@ function hvcat(rows::Tuple{Vararg{Int}}, xs::T...) where T<:Number
21152113
k = 1
21162114
@inbounds for i=1:nr
21172115
if nc != rows[i]
2118-
throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
2116+
throw(DimensionMismatch("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
21192117
end
21202118
for j=1:nc
21212119
a[i,j] = xs[k]
@@ -2144,14 +2142,14 @@ end
21442142
hvcat(rows::Tuple{Vararg{Int}}, xs::Number...) = typed_hvcat(promote_typeof(xs...), rows, xs...)
21452143
hvcat(rows::Tuple{Vararg{Int}}, xs...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...)
21462144
# the following method is needed to provide a more specific one compared to LinearAlgebra/uniformscaling.jl
2147-
hvcat(rows::Tuple{Vararg{Int}}, xs::Union{AbstractVecOrMat,Number}...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...)
2145+
hvcat(rows::Tuple{Vararg{Int}}, xs::Union{AbstractArray,Number}...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...)
21482146

21492147
function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, xs::Number...) where T
21502148
nr = length(rows)
21512149
nc = rows[1]
21522150
for i = 2:nr
21532151
if nc != rows[i]
2154-
throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
2152+
throw(DimensionMismatch("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))"))
21552153
end
21562154
end
21572155
hvcat_fill!(Matrix{T}(undef, nr, nc), xs)
@@ -2319,7 +2317,7 @@ function _typed_hvncat(::Type{T}, ::Val{N}, as::AbstractArray...) where {T, N}
23192317
Ndim += cat_size(as[i], N)
23202318
nd = max(nd, cat_ndims(as[i]))
23212319
for d 1:N - 1
2322-
cat_size(as[1], d) == cat_size(as[i], d) || throw(ArgumentError("mismatched size along axis $d in element $i"))
2320+
cat_size(as[1], d) == cat_size(as[i], d) || throw(DimensionMismatch("mismatched size along axis $d in element $i"))
23232321
end
23242322
end
23252323

@@ -2346,7 +2344,7 @@ function _typed_hvncat(::Type{T}, ::Val{N}, as...) where {T, N}
23462344
nd = max(nd, cat_ndims(as[i]))
23472345
for d 1:N-1
23482346
cat_size(as[i], d) == 1 ||
2349-
throw(ArgumentError("all dimensions of element $i other than $N must be of length 1"))
2347+
throw(DimensionMismatch("all dimensions of element $i other than $N must be of length 1"))
23502348
end
23512349
end
23522350

@@ -2463,7 +2461,7 @@ function _typed_hvncat_dims(::Type{T}, dims::NTuple{N, Int}, row_first::Bool, as
24632461
for dd 1:N
24642462
dd == d && continue
24652463
if cat_size(as[startelementi], dd) != cat_size(as[i], dd)
2466-
throw(ArgumentError("incompatible shape in element $i"))
2464+
throw(DimensionMismatch("incompatible shape in element $i"))
24672465
end
24682466
end
24692467
end
@@ -2500,18 +2498,18 @@ function _typed_hvncat_dims(::Type{T}, dims::NTuple{N, Int}, row_first::Bool, as
25002498
elseif currentdims[d] < outdims[d] # dimension in progress
25012499
break
25022500
else # exceeded dimension
2503-
throw(ArgumentError("argument $i has too many elements along axis $d"))
2501+
throw(DimensionMismatch("argument $i has too many elements along axis $d"))
25042502
end
25052503
end
25062504
end
25072505
elseif currentdims[d1] > outdims[d1] # exceeded dimension
2508-
throw(ArgumentError("argument $i has too many elements along axis $d1"))
2506+
throw(DimensionMismatch("argument $i has too many elements along axis $d1"))
25092507
end
25102508
end
25112509

25122510
outlen = prod(outdims)
25132511
elementcount == outlen ||
2514-
throw(ArgumentError("mismatched number of elements; expected $(outlen), got $(elementcount)"))
2512+
throw(DimensionMismatch("mismatched number of elements; expected $(outlen), got $(elementcount)"))
25152513

25162514
# copy into final array
25172515
A = cat_similar(as[1], T, outdims)
@@ -2572,8 +2570,8 @@ function _typed_hvncat_shape(::Type{T}, shape::NTuple{N, Tuple}, row_first, as::
25722570
if d == 1 || i == 1 || wasstartblock
25732571
currentdims[d] += dsize
25742572
elseif dsize != cat_size(as[i - 1], ad)
2575-
throw(ArgumentError("argument $i has a mismatched number of elements along axis $ad; \
2576-
expected $(cat_size(as[i - 1], ad)), got $dsize"))
2573+
throw(DimensionMismatch("argument $i has a mismatched number of elements along axis $ad; \
2574+
expected $(cat_size(as[i - 1], ad)), got $dsize"))
25772575
end
25782576

25792577
wasstartblock = blockcounts[d] == 1 # remember for next dimension
@@ -2583,15 +2581,15 @@ function _typed_hvncat_shape(::Type{T}, shape::NTuple{N, Tuple}, row_first, as::
25832581
if outdims[d] == -1
25842582
outdims[d] = currentdims[d]
25852583
elseif outdims[d] != currentdims[d]
2586-
throw(ArgumentError("argument $i has a mismatched number of elements along axis $ad; \
2587-
expected $(abs(outdims[d] - (currentdims[d] - dsize))), got $dsize"))
2584+
throw(DimensionMismatch("argument $i has a mismatched number of elements along axis $ad; \
2585+
expected $(abs(outdims[d] - (currentdims[d] - dsize))), got $dsize"))
25882586
end
25892587
currentdims[d] = 0
25902588
blockcounts[d] = 0
25912589
shapepos[d] += 1
25922590
d > 1 && (blockcounts[d - 1] == 0 ||
2593-
throw(ArgumentError("shape in level $d is inconsistent; level counts must nest \
2594-
evenly into each other")))
2591+
throw(DimensionMismatch("shape in level $d is inconsistent; level counts must nest \
2592+
evenly into each other")))
25952593
end
25962594
end
25972595
end

base/array.jl

Lines changed: 0 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -2041,18 +2041,6 @@ function vcat(arrays::Vector{T}...) where T
20412041
end
20422042
vcat(A::Vector...) = cat(A...; dims=Val(1)) # more special than SparseArrays's vcat
20432043

2044-
# disambiguation with LinAlg/special.jl
2045-
# Union{Number,Vector,Matrix} is for LinearAlgebra._DenseConcatGroup
2046-
# VecOrMat{T} is for LinearAlgebra._TypedDenseConcatGroup
2047-
hcat(A::Union{Number,Vector,Matrix}...) = cat(A...; dims=Val(2))
2048-
hcat(A::VecOrMat{T}...) where {T} = typed_hcat(T, A...)
2049-
vcat(A::Union{Number,Vector,Matrix}...) = cat(A...; dims=Val(1))
2050-
vcat(A::VecOrMat{T}...) where {T} = typed_vcat(T, A...)
2051-
hvcat(rows::Tuple{Vararg{Int}}, xs::Union{Number,Vector,Matrix}...) =
2052-
typed_hvcat(promote_eltypeof(xs...), rows, xs...)
2053-
hvcat(rows::Tuple{Vararg{Int}}, xs::VecOrMat{T}...) where {T} =
2054-
typed_hvcat(T, rows, xs...)
2055-
20562044
_cat(n::Integer, x::Integer...) = reshape([x...], (ntuple(Returns(1), n-1)..., length(x)))
20572045

20582046
## find ##

deps/checksums/SparseArrays-2c7f4d6d839e9a97027454a037bfa004c1eb34b0.tar.gz/md5

Lines changed: 0 additions & 1 deletion
This file was deleted.

deps/checksums/SparseArrays-2c7f4d6d839e9a97027454a037bfa004c1eb34b0.tar.gz/sha512

Lines changed: 0 additions & 1 deletion
This file was deleted.
Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
e59c1c57b97e17a73eba758d65022bd7
Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
ad88ebe77aaf1580e6d7ee7649ac5b812a23b9d9bf947f26babe9dd79902f6da11aa69bf63f22f67f6eae92a4c6e665cc3b950bb7c648c623e9cb4b9cb4daac4

stdlib/LinearAlgebra/src/special.jl

Lines changed: 5 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -330,27 +330,11 @@ end
330330
==(A::Bidiagonal, B::SymTridiagonal) = iszero(_evview(B)) && iszero(A.ev) && A.dv == B.dv
331331
==(B::SymTridiagonal, A::Bidiagonal) = A == B
332332

333-
# concatenation
334-
const _SpecialArrays = Union{Diagonal, Bidiagonal, Tridiagonal, SymTridiagonal}
335-
const _Symmetric_DenseArrays{T,A<:Matrix} = Symmetric{T,A}
336-
const _Hermitian_DenseArrays{T,A<:Matrix} = Hermitian{T,A}
337-
const _Triangular_DenseArrays{T,A<:Matrix} = UpperOrLowerTriangular{T,A}
338-
const _Annotated_DenseArrays = Union{_SpecialArrays, _Triangular_DenseArrays, _Symmetric_DenseArrays, _Hermitian_DenseArrays}
339-
const _Annotated_Typed_DenseArrays{T} = Union{_Triangular_DenseArrays{T}, _Symmetric_DenseArrays{T}, _Hermitian_DenseArrays{T}}
340-
const _DenseConcatGroup = Union{Number, Vector, Adjoint{<:Any,<:Vector}, Transpose{<:Any,<:Vector}, Matrix, _Annotated_DenseArrays}
341-
const _TypedDenseConcatGroup{T} = Union{Vector{T}, Adjoint{T,Vector{T}}, Transpose{T,Vector{T}}, Matrix{T}, _Annotated_Typed_DenseArrays{T}}
342-
343-
promote_to_array_type(::Tuple{Vararg{Union{_DenseConcatGroup,UniformScaling}}}) = Matrix
344-
345-
Base._cat(dims, xs::_DenseConcatGroup...) = Base._cat_t(dims, promote_eltype(xs...), xs...)
346-
vcat(A::_DenseConcatGroup...) = Base.typed_vcat(promote_eltype(A...), A...)
347-
hcat(A::_DenseConcatGroup...) = Base.typed_hcat(promote_eltype(A...), A...)
348-
hvcat(rows::Tuple{Vararg{Int}}, xs::_DenseConcatGroup...) = Base.typed_hvcat(promote_eltype(xs...), rows, xs...)
349-
# For performance, specially handle the case where the matrices/vectors have homogeneous eltype
350-
Base._cat(dims, xs::_TypedDenseConcatGroup{T}...) where {T} = Base._cat_t(dims, T, xs...)
351-
vcat(A::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_vcat(T, A...)
352-
hcat(A::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_hcat(T, A...)
353-
hvcat(rows::Tuple{Vararg{Int}}, xs::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_hvcat(T, rows, xs...)
333+
# TODO: remove these deprecations (used by SparseArrays in the past)
334+
const _DenseConcatGroup = Union{}
335+
const _SpecialArrays = Union{}
336+
337+
promote_to_array_type(::Tuple) = Matrix
354338

355339
# factorizations
356340
function cholesky(S::RealHermSymComplexHerm{<:Real,<:SymTridiagonal}, ::NoPivot = NoPivot(); check::Bool = true)

stdlib/LinearAlgebra/src/uniformscaling.jl

Lines changed: 6 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -408,7 +408,7 @@ end
408408
# so that we can re-use this code for sparse-matrix hcat etcetera.
409409
promote_to_arrays_(n::Int, ::Type, a::Number) = a
410410
promote_to_arrays_(n::Int, ::Type{Matrix}, J::UniformScaling{T}) where {T} = Matrix(J, n, n)
411-
promote_to_arrays_(n::Int, ::Type, A::AbstractVecOrMat) = A
411+
promote_to_arrays_(n::Int, ::Type, A::AbstractArray) = A
412412
promote_to_arrays(n,k, ::Type) = ()
413413
promote_to_arrays(n,k, ::Type{T}, A) where {T} = (promote_to_arrays_(n[k], T, A),)
414414
promote_to_arrays(n,k, ::Type{T}, A, B) where {T} =
@@ -417,17 +417,16 @@ promote_to_arrays(n,k, ::Type{T}, A, B, C) where {T} =
417417
(promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B), promote_to_arrays_(n[k+2], T, C))
418418
promote_to_arrays(n,k, ::Type{T}, A, B, Cs...) where {T} =
419419
(promote_to_arrays_(n[k], T, A), promote_to_arrays_(n[k+1], T, B), promote_to_arrays(n,k+2, T, Cs...)...)
420-
promote_to_array_type(A::Tuple{Vararg{Union{AbstractVecOrMat,UniformScaling,Number}}}) = Matrix
421420

422421
_us2number(A) = A
423422
_us2number(J::UniformScaling) = J.λ
424423

425424
for (f, _f, dim, name) in ((:hcat, :_hcat, 1, "rows"), (:vcat, :_vcat, 2, "cols"))
426425
@eval begin
427-
@inline $f(A::Union{AbstractVecOrMat,UniformScaling}...) = $_f(A...)
426+
@inline $f(A::Union{AbstractArray,UniformScaling}...) = $_f(A...)
428427
# if there's a Number present, J::UniformScaling must be 1x1-dimensional
429-
@inline $f(A::Union{AbstractVecOrMat,UniformScaling,Number}...) = $f(map(_us2number, A)...)
430-
function $_f(A::Union{AbstractVecOrMat,UniformScaling,Number}...; array_type = promote_to_array_type(A))
428+
@inline $f(A::Union{AbstractArray,UniformScaling,Number}...) = $f(map(_us2number, A)...)
429+
function $_f(A::Union{AbstractArray,UniformScaling,Number}...; array_type = promote_to_array_type(A))
431430
n = -1
432431
for a in A
433432
if !isa(a, UniformScaling)
@@ -445,9 +444,8 @@ for (f, _f, dim, name) in ((:hcat, :_hcat, 1, "rows"), (:vcat, :_vcat, 2, "cols"
445444
end
446445
end
447446

448-
hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling}...) = _hvcat(rows, A...)
449-
hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling,Number}...) = _hvcat(rows, A...)
450-
function _hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractVecOrMat,UniformScaling,Number}...; array_type = promote_to_array_type(A))
447+
hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractArray,UniformScaling,Number}...) = _hvcat(rows, A...)
448+
function _hvcat(rows::Tuple{Vararg{Int}}, A::Union{AbstractArray,UniformScaling,Number}...; array_type = promote_to_array_type(A))
451449
require_one_based_indexing(A...)
452450
nr = length(rows)
453451
sum(rows) == length(A) || throw(ArgumentError("mismatch between row sizes and number of arguments"))

stdlib/SparseArrays.version

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
SPARSEARRAYS_BRANCH = main
2-
SPARSEARRAYS_SHA1 = 2c7f4d6d839e9a97027454a037bfa004c1eb34b0
2+
SPARSEARRAYS_SHA1 = b4b0e721ada6e8cf5f6391aff4db307be69b0401
33
SPARSEARRAYS_GIT_URL := https://github.com/JuliaSparse/SparseArrays.jl.git
44
SPARSEARRAYS_TAR_URL = https://api.github.com/repos/JuliaSparse/SparseArrays.jl/tarball/$1

0 commit comments

Comments
 (0)