Skip to content

Commit db6193c

Browse files
authored
doc: add spaces after commas in some function calls (#50478)
1 parent 7530a63 commit db6193c

File tree

1 file changed

+28
-28
lines changed

1 file changed

+28
-28
lines changed

doc/src/manual/mathematical-operations.md

Lines changed: 28 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ are supported on all primitive numeric types:
2020
| `x ÷ y` | integer divide | x / y, truncated to an integer |
2121
| `x \ y` | inverse divide | equivalent to `y / x` |
2222
| `x ^ y` | power | raises `x` to the `y`th power |
23-
| `x % y` | remainder | equivalent to `rem(x,y)` |
23+
| `x % y` | remainder | equivalent to `rem(x, y)` |
2424

2525
A numeric literal placed directly before an identifier or parentheses, e.g. `2x` or `2(x+y)`, is treated as a multiplication, except with higher precedence than other binary operations. See [Numeric Literal Coefficients](@ref man-numeric-literal-coefficients) for details.
2626

@@ -171,15 +171,15 @@ The updating versions of all the binary arithmetic and bitwise operators are:
171171
For *every* binary operation like `^`, there is a corresponding
172172
"dot" operation `.^` that is *automatically* defined
173173
to perform `^` element-by-element on arrays. For example,
174-
`[1,2,3] ^ 3` is not defined, since there is no standard
174+
`[1, 2, 3] ^ 3` is not defined, since there is no standard
175175
mathematical meaning to "cubing" a (non-square) array, but
176-
`[1,2,3] .^ 3` is defined as computing the elementwise
176+
`[1, 2, 3] .^ 3` is defined as computing the elementwise
177177
(or "vectorized") result `[1^3, 2^3, 3^3]`. Similarly for unary
178178
operators like `!` or ``, there is a corresponding `.√` that
179179
applies the operator elementwise.
180180

181181
```jldoctest
182-
julia> [1,2,3] .^ 3
182+
julia> [1, 2, 3] .^ 3
183183
3-element Vector{Int64}:
184184
1
185185
8
@@ -524,43 +524,43 @@ See [Conversion and Promotion](@ref conversion-and-promotion) for how to define
524524

525525
### Division functions
526526

527-
| Function | Description |
528-
|:------------------------- |:--------------------------------------------------------------------------------------------------------- |
529-
| [`div(x,y)`](@ref), `x÷y` | truncated division; quotient rounded towards zero |
530-
| [`fld(x,y)`](@ref) | floored division; quotient rounded towards `-Inf` |
531-
| [`cld(x,y)`](@ref) | ceiling division; quotient rounded towards `+Inf` |
532-
| [`rem(x,y)`](@ref), `x%y` | remainder; satisfies `x == div(x,y)*y + rem(x,y)`; sign matches `x` |
533-
| [`mod(x,y)`](@ref) | modulus; satisfies `x == fld(x,y)*y + mod(x,y)`; sign matches `y` |
534-
| [`mod1(x,y)`](@ref) | `mod` with offset 1; returns `r∈(0,y]` for `y>0` or `r∈[y,0)` for `y<0`, where `mod(r, y) == mod(x, y)` |
535-
| [`mod2pi(x)`](@ref) | modulus with respect to 2pi; `0 <= mod2pi(x) < 2pi` |
536-
| [`divrem(x,y)`](@ref) | returns `(div(x,y),rem(x,y))` |
537-
| [`fldmod(x,y)`](@ref) | returns `(fld(x,y),mod(x,y))` |
538-
| [`gcd(x,y...)`](@ref) | greatest positive common divisor of `x`, `y`,... |
539-
| [`lcm(x,y...)`](@ref) | least positive common multiple of `x`, `y`,... |
527+
| Function | Description |
528+
|:-------------------------- |:--------------------------------------------------------------------------------------------------------- |
529+
| [`div(x, y)`](@ref), `x÷y` | truncated division; quotient rounded towards zero |
530+
| [`fld(x, y)`](@ref) | floored division; quotient rounded towards `-Inf` |
531+
| [`cld(x, y)`](@ref) | ceiling division; quotient rounded towards `+Inf` |
532+
| [`rem(x, y)`](@ref), `x%y` | remainder; satisfies `x == div(x, y)*y + rem(x, y)`; sign matches `x` |
533+
| [`mod(x, y)`](@ref) | modulus; satisfies `x == fld(x, y)*y + mod(x, y)`; sign matches `y` |
534+
| [`mod1(x, y)`](@ref) | `mod` with offset 1; returns `r∈(0, y]` for `y>0` or `r∈[y, 0)` for `y<0`, where `mod(r, y) == mod(x, y)` |
535+
| [`mod2pi(x)`](@ref) | modulus with respect to 2pi; `0 <= mod2pi(x) < 2pi` |
536+
| [`divrem(x, y)`](@ref) | returns `(div(x, y),rem(x, y))` |
537+
| [`fldmod(x, y)`](@ref) | returns `(fld(x, y),mod(x, y ))` |
538+
| [`gcd(x, y...)`](@ref) | greatest positive common divisor of `x`, `y`,... |
539+
| [`lcm(x, y...)`](@ref) | least positive common multiple of `x`, `y`,... |
540540

541541
### Sign and absolute value functions
542542

543-
| Function | Description |
544-
|:----------------------- |:---------------------------------------------------------- |
545-
| [`abs(x)`](@ref) | a positive value with the magnitude of `x` |
546-
| [`abs2(x)`](@ref) | the squared magnitude of `x` |
547-
| [`sign(x)`](@ref) | indicates the sign of `x`, returning -1, 0, or +1 |
548-
| [`signbit(x)`](@ref) | indicates whether the sign bit is on (true) or off (false) |
549-
| [`copysign(x,y)`](@ref) | a value with the magnitude of `x` and the sign of `y` |
550-
| [`flipsign(x,y)`](@ref) | a value with the magnitude of `x` and the sign of `x*y` |
543+
| Function | Description |
544+
|:------------------------ |:---------------------------------------------------------- |
545+
| [`abs(x)`](@ref) | a positive value with the magnitude of `x` |
546+
| [`abs2(x)`](@ref) | the squared magnitude of `x` |
547+
| [`sign(x)`](@ref) | indicates the sign of `x`, returning -1, 0, or +1 |
548+
| [`signbit(x)`](@ref) | indicates whether the sign bit is on (true) or off (false) |
549+
| [`copysign(x, y)`](@ref) | a value with the magnitude of `x` and the sign of `y` |
550+
| [`flipsign(x, y)`](@ref) | a value with the magnitude of `x` and the sign of `x*y` |
551551

552552
### Powers, logs and roots
553553

554554
| Function | Description |
555555
|:------------------------ |:-------------------------------------------------------------------------- |
556556
| [`sqrt(x)`](@ref), `√x` | square root of `x` |
557557
| [`cbrt(x)`](@ref), `∛x` | cube root of `x` |
558-
| [`hypot(x,y)`](@ref) | hypotenuse of right-angled triangle with other sides of length `x` and `y` |
558+
| [`hypot(x, y)`](@ref) | hypotenuse of right-angled triangle with other sides of length `x` and `y` |
559559
| [`exp(x)`](@ref) | natural exponential function at `x` |
560560
| [`expm1(x)`](@ref) | accurate `exp(x)-1` for `x` near zero |
561-
| [`ldexp(x,n)`](@ref) | `x*2^n` computed efficiently for integer values of `n` |
561+
| [`ldexp(x, n)`](@ref) | `x*2^n` computed efficiently for integer values of `n` |
562562
| [`log(x)`](@ref) | natural logarithm of `x` |
563-
| [`log(b,x)`](@ref) | base `b` logarithm of `x` |
563+
| [`log(b, x)`](@ref) | base `b` logarithm of `x` |
564564
| [`log2(x)`](@ref) | base 2 logarithm of `x` |
565565
| [`log10(x)`](@ref) | base 10 logarithm of `x` |
566566
| [`log1p(x)`](@ref) | accurate `log(1+x)` for `x` near zero |

0 commit comments

Comments
 (0)