@@ -280,13 +280,23 @@ function Base.getproperty(F::BidiagonalFactorization, s::Symbol)
280
280
if s === :leftQ
281
281
return LinearAlgebra. QRPackedQ (R, τl)
282
282
elseif s === :rightQ
283
- return LinearAlgebra. HessenbergQ (copy (transpose (R[1 : size (R,2 ),:])), τr)
283
+ if VERSION < v " 1.3.0-DEV.243"
284
+ return LinearAlgebra. HessenbergQ (copy (transpose (R[1 : size (R,2 ),:])), τr)
285
+ else
286
+ factors = copy (transpose (R[1 : size (R,2 ),:]))
287
+ return LinearAlgebra. HessenbergQ {eltype(factors),typeof(factors),typeof(τr),false} (' U' , factors, τr)
288
+ end
284
289
else
285
290
return getfield (F, s)
286
291
end
287
292
else
288
293
if s === :leftQ
289
- return LinearAlgebra. HessenbergQ (R[:,1 : size (R,1 )], τl)
294
+ if VERSION < v " 1.3.0-DEV.243"
295
+ return LinearAlgebra. HessenbergQ (R[:,1 : size (R,1 )], τl)
296
+ else
297
+ factors = R[:,1 : size (R,1 )]
298
+ return LinearAlgebra. HessenbergQ {eltype(factors),typeof(factors),typeof(τr),false} (' U' , factors, τl)
299
+ end
290
300
elseif s === :rightQ
291
301
# return transpose(LinearAlgebra.LQPackedQ(R, τr)) # FixMe! check that this shouldn't be adjoint
292
302
LinearAlgebra. QRPackedQ (copy (transpose (R)), τr)
0 commit comments