@@ -120,19 +120,19 @@ end
120120 (_BandedMatrix (Vcat (
121121 (- (0 : ∞) ./ (2 : 2 : ∞))' ,
122122 ((2 : ∞) ./ (2 : 2 : ∞))' ), ℵ₀, 0 ,1 ),
123- LazyBandedMatrices. Tridiagonal ((2 : ∞) ./ (3 : 2 : ∞), - 1 ./ ((1 : 2 : ∞) .* (3 : 2 : ∞)), (1 : ∞) ./ (3 : 2 : ∞)))
123+ LazyBandedMatrices. Tridiagonal ((2 : ∞) ./ (3 : 2 : ∞), - 1 ./ ((1 : 2 : ∞) .* (3 : 2 : ∞)), (1 : ∞) ./ (3 : 2 : ∞))),
124124 # P -> C^(5/2)
125125 (_BandedMatrix (Vcat ((- 3 ./ (3 : 2 : ∞))' , Zeros (1 ,∞), (3 ./ (3 : 2 : ∞))' ), ℵ₀, 0 ,2 ) *
126126 _BandedMatrix (Vcat ((- 1 ./ (1 : 2 : ∞))' , Zeros (1 ,∞), (1 ./ (1 : 2 : ∞))' ), ℵ₀, 0 ,2 ),
127127 LazyBandedMatrices. Tridiagonal ((1 : ∞) ./ (1 : 2 : ∞), Zeros (∞), (1 : ∞) ./ (3 : 2 : ∞)))
128128 )
129129 n = 1000
130- @time U = V = R[1 : n,1 : n]
131- @time X = Tridiagonal (Vector (X_T. dl[1 : n- 1 ]), Vector (X_T. d[1 : n]), Vector (X_T. du[1 : n- 1 ]))
132- @time UX = InfiniteLinearAlgebra. upper_mul_tri_triview (U, X)
130+ U = V = R[1 : n,1 : n]
131+ X = Tridiagonal (Vector (X_T. dl[1 : n- 1 ]), Vector (X_T. d[1 : n]), Vector (X_T. du[1 : n- 1 ]))
132+ UX = InfiniteLinearAlgebra. upper_mul_tri_triview (U, X)
133133 @test Tridiagonal (U* X) ≈ UX
134134 # U*X*inv(U) only depends on Tridiagonal(U*X)
135- @time Y = InfiniteLinearAlgebra. tri_mul_invupper_triview (UX, U)
135+ Y = InfiniteLinearAlgebra. tri_mul_invupper_triview (UX, U)
136136 @test Tridiagonal (U* X / U) ≈ Tridiagonal (UX / U) ≈ Y
137137
138138 data = TridiagonalConjugationData (R, X_T)
162162 X_T = LazyBandedMatrices. Tridiagonal (Vcat (1 / sqrt (2 ), Fill (1 / 2 ,∞)), Zeros (∞), Vcat (1 / sqrt (2 ), Fill (1 / 2 ,∞)))
163163 data = TridiagonalConjugationData (R, X_T);
164164 n = 1000
165- @time U = V = R[1 : n,1 : n];
166- @time X = Tridiagonal (Vector (X_T. dl[1 : n- 1 ]), Vector (X_T. d[1 : n]), Vector (X_T. du[1 : n- 1 ]));
165+ U = V = R[1 : n,1 : n];
166+ X = Tridiagonal (Vector (X_T. dl[1 : n- 1 ]), Vector (X_T. d[1 : n]), Vector (X_T. du[1 : n- 1 ]));
167167 UX = Tridiagonal (U* X)
168168 Y = Tridiagonal (UX / U)
169169 @test data. UX[1 ,:] ≈ UX[1 ,1 : 100 ]
0 commit comments