|
1 | 1 | # MLDatasets.jl
|
2 | 2 |
|
3 |
| -[](http://pkg.julialang.org/?pkg=MLDatasets&ver=0.6) |
4 |
| -[](http://pkg.julialang.org/?pkg=MLDatasets&ver=0.7) |
5 |
| -[](http://pkg.julialang.org/?pkg=MLDatasets&ver=1.0) |
6 |
| - |
7 |
| -[](https://JuliaML.github.io/MLDatasets.jl/stable) |
8 |
| -[](https://travis-ci.org/JuliaML/MLDatasets.jl) |
9 |
| - |
10 |
| -This package represents a community effort to provide a common |
| 3 | +_This package represents a community effort to provide a common |
11 | 4 | interface for accessing common Machine Learning (ML) datasets. In
|
12 | 5 | contrast to other data-related Julia packages, the focus of
|
13 | 6 | `MLDatasets.jl` is specifically on downloading, unpacking, and
|
14 | 7 | accessing benchmark dataset. Functionality for the purpose of
|
15 | 8 | data processing or visualization is only provided to a degree
|
16 |
| -that is special to some dataset. |
| 9 | +that is special to some dataset._ |
| 10 | + |
| 11 | +| **Package Status** | **Package Evaluator** | **Build Status** | |
| 12 | +|:------------------:|:---------------------:|:-----------------:| |
| 13 | +| [](LICENSE.md) [](https://JuliaML.github.io/MLDatasets.jl/stable) | [](http://pkg.julialang.org/?pkg=MLDatasets&ver=0.6) [](http://pkg.julialang.org/?pkg=MLDatasets&ver=0.7) [](http://pkg.julialang.org/?pkg=MLDatasets&ver=1.0) | [](https://travis-ci.org/JuliaML/MLDatasets.jl) [](https://coveralls.io/github/JuliaML/MLDatasets.jl?branch=master) | |
| 14 | + |
17 | 15 |
|
18 | 16 | This package is a part of the
|
19 | 17 | [`JuliaML`](https://github.com/JuliaML) ecosystem. Its
|
20 | 18 | functionality is build on top of the package
|
21 | 19 | [`DataDeps.jl`](https://github.com/oxinabox/DataDeps.jl).
|
22 | 20 |
|
23 |
| -## Basic Usage |
| 21 | +## Introduction |
24 | 22 |
|
25 | 23 | The way `MLDatasets.jl` is organized is that each dataset has its
|
26 | 24 | own dedicated sub-module. Where possible, those sub-module share
|
@@ -122,24 +120,44 @@ testdata = UD_English.devdata()
|
122 | 120 | | **PTBLM** | 42068 | 42068 | 3761 | 3761 |
|
123 | 121 | | **UD_English** | 12543 | - | 2077 | - |
|
124 | 122 |
|
| 123 | +## Documentation |
| 124 | + |
| 125 | +Check out the **[latest |
| 126 | +documentation](https://JuliaML.github.io/MLDatasets.jl/stable)** |
| 127 | + |
| 128 | +Additionally, you can make use of Julia's native docsystem. |
| 129 | +The following example shows how to get additional information |
| 130 | +on `MNIST.convert2image` within Julia's REPL: |
| 131 | + |
| 132 | +```julia |
| 133 | +?MNIST.convert2image |
| 134 | +``` |
| 135 | +``` |
| 136 | + convert2image(array) -> Array{Gray} |
| 137 | +
|
| 138 | + Convert the given MNIST horizontal-major tensor (or feature matrix) to a vertical-major Colorant array. The values are also color corrected according to |
| 139 | + the website's description, which means that the digits are black on a white background. |
| 140 | +
|
| 141 | + julia> MNIST.convert2image(MNIST.traintensor()) # full training dataset |
| 142 | + 28×28×60000 Array{Gray{N0f8},3}: |
| 143 | + [...] |
| 144 | +
|
| 145 | + julia> MNIST.convert2image(MNIST.traintensor(1)) # first training image |
| 146 | + 28×28 Array{Gray{N0f8},2}: |
| 147 | + [...] |
| 148 | +``` |
| 149 | + |
125 | 150 | ## Installation
|
126 | 151 |
|
127 | 152 | To install `MLDatasets.jl`, start up Julia and type the following
|
128 | 153 | code snippet into the REPL. It makes use of the native Julia
|
129 | 154 | package manger.
|
130 | 155 |
|
131 | 156 | ```julia
|
| 157 | +import Pkg |
132 | 158 | Pkg.add("MLDatasets")
|
133 | 159 | ```
|
134 | 160 |
|
135 |
| -Additionally, for example if you encounter any sudden issues, or |
136 |
| -in the case you would like to contribute to the package, you can |
137 |
| -manually choose to be on the latest (untagged) version. |
138 |
| - |
139 |
| -```julia |
140 |
| -Pkg.checkout("MLDatasets") |
141 |
| -``` |
142 |
| - |
143 | 161 | ## License
|
144 | 162 |
|
145 | 163 | This code is free to use under the terms of the MIT license.
|
0 commit comments