|
| 1 | +function sphericalbesselj(nu::Real, x::T) where T |
| 2 | + isinteger(nu) && return sphericalbesselj(Int(nu), x) |
| 3 | + abs_nu = abs(nu) |
| 4 | + abs_x = abs(x) |
| 5 | + |
| 6 | + Jnu = sphericalbesselj_positive_args(abs_nu, abs_x) |
| 7 | + if nu >= zero(T) |
| 8 | + if x >= zero(T) |
| 9 | + return Jnu |
| 10 | + else |
| 11 | + return throw(DomainError(x, "Complex result returned for real arguments. Complex arguments are currently not supported")) |
| 12 | + #return Jnu * cispi(abs_nu) |
| 13 | + end |
| 14 | + else |
| 15 | + Ynu = sphericalbessely_positive_args(abs_nu, abs_x) |
| 16 | + spi, cpi = sincospi(abs_nu) |
| 17 | + out = Jnu * cpi - Ynu * spi |
| 18 | + if x >= zero(T) |
| 19 | + return out |
| 20 | + else |
| 21 | + return throw(DomainError(x, "Complex result returned for real arguments. Complex arguments are currently not supported")) |
| 22 | + #return out * cispi(nu) |
| 23 | + end |
| 24 | + end |
| 25 | +end |
| 26 | + |
| 27 | +function sphericalbesselj(nu::Integer, x::T) where T |
| 28 | + abs_nu = abs(nu) |
| 29 | + abs_x = abs(x) |
| 30 | + sg = iseven(abs_nu) ? 1 : -1 |
| 31 | + |
| 32 | + Jnu = sphericalbesselj_positive_args(abs_nu, abs_x) |
| 33 | + if nu >= zero(T) |
| 34 | + return x >= zero(T) ? Jnu : Jnu * sg |
| 35 | + else |
| 36 | + if x >= zero(T) |
| 37 | + return Jnu * sg |
| 38 | + else |
| 39 | + Ynu = sphericalbessely_positive_args(abs_nu, abs_x) |
| 40 | + spi, cpi = sincospi(abs_nu) |
| 41 | + return (cpi*Jnu - spi*Ynu) * sg |
| 42 | + end |
| 43 | + end |
| 44 | +end |
| 45 | + |
| 46 | +function sphericalbesselj_positive_args(nu::Real, x::T) where T |
| 47 | + if x^2 / (4*nu + 110) < eps(T) |
| 48 | + # small arguments power series expansion |
| 49 | + x2 = x^2 / 4 |
| 50 | + coef = evalpoly(x2, (1, -inv(3/2 + nu), -inv(5 + nu), -inv(21/2 + nu), -inv(18 + nu))) |
| 51 | + a = sqrt(T(pi)/2) / (gamma(T(3)/2 + nu) * 2^(nu + T(1)/2)) |
| 52 | + return x^nu * a * coef |
| 53 | + elseif isinteger(nu) |
| 54 | + if (x >= nu && nu < 250) || (x < nu && nu < 60) |
| 55 | + return sphericalbesselj_recurrence(nu, x) |
| 56 | + else |
| 57 | + return SQPIO2(T) * besselj(nu + 1/2, x) / sqrt(x) |
| 58 | + end |
| 59 | + else |
| 60 | + return SQPIO2(T) * besselj(nu + 1/2, x) / sqrt(x) |
| 61 | + end |
| 62 | +end |
| 63 | + |
| 64 | +# very accurate approach however need to consider some performance issues |
| 65 | +# if recurrence is stable (x>=nu) can generate very fast up to orders around 250 |
| 66 | +# for larger orders it is more efficient to use other expansions |
| 67 | +# if (x<nu) we can use forward recurrence from sphericalbesselj_recurrence and |
| 68 | +# then use a continued fraction approach. However, for largish orders (>60) the |
| 69 | +# continued fraction is slower converging and more efficient to use other methods |
| 70 | +function sphericalbesselj_recurrence(nu::Integer, x) |
| 71 | + if x >= nu |
| 72 | + # forward recurrence if stable |
| 73 | + xinv = inv(x) |
| 74 | + s, c = sincos(x) |
| 75 | + sJ0 = s * xinv |
| 76 | + sJ1 = (sJ0 - c) * xinv |
| 77 | + |
| 78 | + nu_start = one(T) |
| 79 | + while nu_start < nu + 0.5 |
| 80 | + sJ0, sJ1 = sJ1, muladd((2*nu_start + 1)*xinv, sJ1, -sJ0) |
| 81 | + nu_start += 1 |
| 82 | + end |
| 83 | + return sJ0 |
| 84 | + elseif x < nu |
| 85 | + # compute sphericalbessely with forward recurrence and use continued fraction |
| 86 | + sYnm1, sYn = sphericalbessely_forward_recurrence(nu, x) |
| 87 | + H = besselj_ratio_jnu_jnum1(nu + 3/2, x) |
| 88 | + return inv(x^2 * (H*sYnm1 - sYn)) |
| 89 | + end |
| 90 | +end |
| 91 | + |
| 92 | + |
| 93 | + |
| 94 | +function sphericalbessely(nu::Real, x::T) where T |
| 95 | + isinteger(nu) && return sphericalbessely(Int(nu), x) |
| 96 | + abs_nu = abs(nu) |
| 97 | + abs_x = abs(x) |
| 98 | + |
| 99 | + Ynu = sphericalbessely_positive_args(abs_nu, abs_x) |
| 100 | + if nu >= zero(T) |
| 101 | + if x >= zero(T) |
| 102 | + return Ynu |
| 103 | + else |
| 104 | + return throw(DomainError(x, "Complex result returned for real arguments. Complex arguments are currently not supported")) |
| 105 | + #return Ynu * cispi(-nu) + 2im * besselj_positive_args(abs_nu, abs_x) * cospi(abs_nu) |
| 106 | + end |
| 107 | + else |
| 108 | + Jnu = sphericalbesselj_positive_args(abs_nu, abs_x) |
| 109 | + spi, cpi = sincospi(abs_nu) |
| 110 | + if x >= zero(T) |
| 111 | + return Ynu * cpi + Jnu * spi |
| 112 | + else |
| 113 | + return throw(DomainError(x, "Complex result returned for real arguments. Complex arguments are currently not supported")) |
| 114 | + #return cpi * (Ynu * cispi(nu) + 2im * Jnu * cpi) + Jnu * spi * cispi(abs_nu) |
| 115 | + end |
| 116 | + end |
| 117 | +end |
| 118 | +function sphericalbessely(nu::Integer, x::T) where T |
| 119 | + abs_nu = abs(nu) |
| 120 | + abs_x = abs(x) |
| 121 | + sg = iseven(abs_nu) ? 1 : -1 |
| 122 | + |
| 123 | + Ynu = sphericalbessely_positive_args(abs_nu, abs_x) |
| 124 | + if nu >= zero(T) |
| 125 | + if x >= zero(T) |
| 126 | + return Ynu |
| 127 | + else |
| 128 | + return throw(DomainError(x, "Complex result returned for real arguments. Complex arguments are currently not supported")) |
| 129 | + #return Ynu * sg + 2im * sg * besselj_positive_args(abs_nu, abs_x) |
| 130 | + end |
| 131 | + else |
| 132 | + if x >= zero(T) |
| 133 | + return Ynu * sg |
| 134 | + else |
| 135 | + return throw(DomainError(x, "Complex result returned for real arguments. Complex arguments are currently not supported")) |
| 136 | + #return Ynu + 2im * besselj_positive_args(abs_nu, abs_x) |
| 137 | + end |
| 138 | + end |
| 139 | +end |
| 140 | + |
| 141 | +function sphericalbessely_positive_args(nu::Real, x::T) where T |
| 142 | + if besseljy_debye_cutoff(nu, x) |
| 143 | + # for very large orders use expansion nu >> x to avoid overflow in recurrence |
| 144 | + return SQPIO2(T) * besseljy_debye(nu + 1/2, x)[2] / sqrt(x) |
| 145 | + elseif isinteger(nu) && nu < 250 |
| 146 | + return sphericalbessely_forward_recurrence(Int(nu), x)[1] |
| 147 | + else |
| 148 | + return SQPIO2(T) * bessely(nu + 1/2, x) / sqrt(x) |
| 149 | + end |
| 150 | +end |
| 151 | + |
| 152 | +function sphericalbessely_forward_recurrence(nu::Integer, x::T) where T |
| 153 | + xinv = inv(x) |
| 154 | + s, c = sincos(x) |
| 155 | + sY0 = -c * xinv |
| 156 | + sY1 = xinv * (sY0 - s) |
| 157 | + |
| 158 | + nu_start = one(T) |
| 159 | + while nu_start < nu + 0.5 |
| 160 | + sY0, sY1 = sY1, muladd((2*nu_start + 1)*xinv, sY1, -sY0) |
| 161 | + nu_start += 1 |
| 162 | + end |
| 163 | + return sY0, sY1 |
| 164 | +end |
0 commit comments