15
15
# Hankel's asymptotic expansion is used
16
16
# where R7 and R8 are rational functions (Pn(x)/Qn(x)) of degree 7 and 8 respectively
17
17
# See section 4 of [3] for more details and [1] for coefficients of polynomials
18
- #
18
+ #
19
19
# Branch 3: x >= 25.0
20
20
# besselj0 = sqrt(2/(pi*x))*beta(x)*(cos(x - pi/4 - alpha(x))
21
21
# See modified expansions given in [3]. Exact coefficients are used
22
22
#
23
23
# Calculation of besselj1 is done in a similar way as besselj0.
24
24
# See [3] for details on similarities.
25
- #
25
+ #
26
26
# [1] https://github.com/deepmind/torch-cephes
27
27
# [2] Cephes Math Library Release 2.8: June, 2000 by Stephen L. Moshier
28
- # [3] Harrison, John. "Fast and accurate Bessel function computation."
28
+ # [3] Harrison, John. "Fast and accurate Bessel function computation."
29
29
# 2009 19th IEEE Symposium on Computer Arithmetic. IEEE, 2009.
30
30
#
31
31
32
+ # poly = Float64.(Tuple(ratfn_minimax(x->r(x,pts[i]), ((pts[i][1]-pts[i-1][1])/2, (pts[i][1]-pts[i+1][1])/2), 13, 0)[1]))
33
+
34
+ const PTS = (( 2.404825557695773 , - 1.176691651530894e-16 ),
35
+ ( 3.8317059702075125 , - 1.5269184090088067e-16 ),
36
+ ( 5.520078110286311 , 8.088597146146722e-17 ),
37
+ ( 7.015586669815619 , - 9.414165653410389e-17 ),
38
+ ( 8.653727912911013 , - 2.92812607320779e-16 ),
39
+ (10.173468135062722 , 4.482162274768888e-16 ),
40
+ (11.791534439014281 , 2.812956912778735e-16 ),
41
+ (13.323691936314223 , 2.600408064718813e-16 ),
42
+ (14.930917708487787 , - 7.070514505983074e-16 ),
43
+ (16.470630050877634 , - 1.619019544798128e-15 ),
44
+ (18.071063967910924 , - 9.658048089426209e-16 ),
45
+ (19.615858510468243 , - 1.004445634526616e-15 ),
46
+ (21.21163662987926 , 4.947077428784068e-16 ),
47
+ (22.760084380592772 , - 4.925749373614922e-16 ),
48
+ (24.352471530749302 , 9.169067133951066e-16 ))
49
+ const POLYS = ((0.0 , - 0.5191474972894669 , 0.10793870175491979 , 0.05660177443794914 , - 0.008657669593292222 , - 0.0021942003590739974 , 0.0002643770365942964 , 4.37291931443113e-5 , - 4.338825419759815e-6 , - 5.304927679598406e-7 , 4.469819175606667e-8 , 4.3284827345621115e-9 , - 3.135111000732148e-10 , - 2.628876489517534e-11 ),
50
+ (- 0.402759395702553 , 2.476919088072758e-16 , 0.20137969785127532 , - 0.017518715285670765 , - 0.013352611033152278 , 0.0010359438492839443 , 0.00037218755624680334 , - 2.4952042421113972e-5 , - 5.776086353844158e-6 , 3.374317129436161e-7 , 5.727482259215452e-8 , - 2.9561880489355444e-9 , - 3.905845672635605e-10 , 1.971332566705736e-11 ),
51
+ (0.0 , 0.34026480655836816 , - 0.030820651425593214 , - 0.05298855286760721 , 0.004631042145890388 , 0.002257440229081131 , - 0.00017518572879518415 , - 4.6521091062878115e-5 , 3.199785909661533e-6 , 5.716500268232186e-7 , - 3.5112898510841466e-8 , - 4.684643389757727e-9 , 2.562685034682206e-10 , 2.7958958795750104e-11 ),
52
+ (0.30011575252613254 , - 1.6640272822046001e-16 , - 0.15005787626306408 , 0.007129737603121546 , 0.011742619737383848 , - 0.0006260583453094324 , - 0.00035093119008693753 , 1.7929701912295164e-5 , 5.6239324892485754e-6 , - 2.668437501970219e-7 , - 5.6648488273749086e-8 , 2.48117399780498e-9 , 3.8876537586241154e-10 , - 1.6657136713437192e-11 ),
53
+ (0.0 , - 0.27145229992838193 , 0.015684124960953488 , 0.044033774963413 , - 0.0025093022271948434 , - 0.0020603351551475315 , 0.00011243486771159352 , 4.482303558813413e-5 , - 2.288390108003442e-6 , - 5.679383588459768e-7 , 2.693939234375692e-8 , 4.737285529934781e-9 , - 2.0612709555352797e-10 , - 2.8163166483726606e-11 ),
54
+ (- 0.2497048770578432 , 1.1807897766765572e-16 , 0.12485243852891914 , - 0.0040907858517059345 , - 0.010102792347641438 , 0.00038536375952213334 , 0.00031859711440332953 , - 1.2373899600646271e-5 , - 5.3013932979548665e-6 , 2.001098153528186e-7 , 5.4711629662471434e-8 , - 1.9724572531751518e-9 , - 3.8121398193699247e-10 , 1.3667679743782715e-11 ),
55
+ (0.0 , 0.23245983136472478 , - 0.009857064513825458 , - 0.03818600911162367 , 0.0016073972920762946 , 0.0018420433388794816 , - 7.581358465623415e-5 , - 4.159284549011371e-5 , 1.650645590334915e-6 , 5.425453494592871e-7 , - 2.0556207467977526e-8 , - 4.620018928884712e-9 , 1.642028058414746e-10 , 2.7701605444102412e-11 ),
56
+ (0.21835940724787295 , - 8.89726402965429e-17 , - 0.10917970362393398 , 0.0027314677279632535 , 0.008944552393700088 , - 0.00026391472261453583 , - 0.00028847875053074687 , 8.858193371737123e-6 , 4.9233776180403375e-6 , - 1.5077786827161215e-7 , - 5.190218733666561e-8 , 1.5539413886301204e-9 , 3.674809363354973e-10 , - 1.1113645791216594e-11 ),
57
+ (0.0 , - 0.20654643307799603 , 0.006916736034268416 , 0.034115572697347704 , - 0.001137276252948717 , - 0.0016680057255530109 , 5.4841792064182565e-5 , 3.837965853474541e-5 , - 1.2335804050962046e-6 , - 5.106259295634553e-7 , 1.592333632709497e-8 , 4.423517565793139e-9 , - 1.3138837384184105e-10 , - 2.6809397212536384e-11 ),
58
+ (- 0.19646537146865717 , 6.979167865106427e-17 , 0.09823268573432613 , - 0.001988037402152532 , - 0.008095530671166083 , 0.00019440675128712672 , 0.0002640383898036336 , - 6.666777683303928e-6 , - 4.5715696772304925e-6 , 1.1666296153560847e-7 , 4.8913639696764225e-8 , - 1.2379867207945651e-9 , - 3.508930968415813e-10 , 9.07632091591013e-12 ),
59
+ (0.0 , 0.18772880304043943 , - 0.005194182350684612 , - 0.031096513233785917 , 0.0008577442641273341 , 0.0015312251534677639 , - 4.184307585284775e-5 , - 3.5603170534217916e-5 , 9.58002109234601e-7 , 4.795250964600283e-7 , - 1.263434500625308e-8 , - 4.20550167685701e-9 , 1.065791122326672e-10 , 2.5727417675684577e-11 ),
60
+ (0.18006337534431555 , - 5.638484737644332e-17 , - 0.09003168767215539 , 0.0015299132863046024 , 0.0074441453680234426 , - 0.00015060569680378768 , - 0.0002443398416353605 , 5.227001519013193e-6 , 4.267152607972633e-6 , - 9.295966007495808e-8 , - 4.610438011417262e-8 , 1.0049092632275165e-9 , 3.339442682325105e-10 , - 7.4991079301099e-12 ),
61
+ (0.0 , - 0.17326589422922986 , 0.004084217951979124 , 0.028749284970146657 , - 0.0006761643016121907 , - 0.0014215899173758441 , 3.320978125391802e-5 , 3.3264379323815026e-5 , - 7.684444100376941e-7 , - 4.515479818833484e-7 , 1.0271599456634145e-8 , 3.993903280527723e-9 , - 8.793975528824604e-11 , - 2.4610374225652004e-11 ),
62
+ (- 0.16718460047381803 , 4.662597138876655e-17 , 0.08359230023690671 , - 0.0012242529339116864 , - 0.006925682915280748 , 0.00012100729852042988 , 0.00022821854128498174 , - 4.230799709959437e-6 , - 4.007618360337058e-6 , 7.601217108010105e-8 , 4.358483157250522e-8 , - 8.317621452517008e-10 , - 3.178805429572483e-10 , 6.284538399593043e-12 ),
63
+ (0.0 , 0.16170155068925002 , - 0.003320023400603752 , - 0.026859370386562005 , 0.0005505380905962079 , 0.001331699465921981 , - 2.7156832110124053e-5 , - 3.128954487528851e-5 , 6.326902787990595e-7 , 4.269717284901734e-7 , - 8.532904814909196e-9 , - 3.799560194537855e-9 , 7.410932094856478e-11 , 2.3903214947728713e-11 ))
64
+
32
65
"""
33
66
besselj0(x::T) where T <: Union{Float32, Float64}
34
67
@@ -39,26 +72,12 @@ function besselj0(x::Float64)
39
72
x = abs (x)
40
73
isinf (x) && return zero (x)
41
74
42
- if x <= 5
43
- z = x * x
44
- if x < 1.0e-5
45
- return 1.0 - z / 4.0
46
- end
47
- DR1 = 5.78318596294678452118e0
48
- DR2 = 3.04712623436620863991e1
49
- p = (z - DR1) * (z - DR2)
50
- p = p * evalpoly (z, RP_j0 (T)) / evalpoly (z, RQ_j0 (T))
51
- return p
52
- elseif x < 25.0
53
- w = 5.0 / x
54
- q = 25.0 / (x * x)
55
-
56
- p = evalpoly (q, PP_j0 (T)) / evalpoly (q, PQ_j0 (T))
57
- q = evalpoly (q, QP_j0 (T)) / evalpoly (q, QQ_j0 (T))
58
- xn = x - PIO4 (T)
59
- sc = sincos (xn)
60
- p = p * sc[2 ] - w * q * sc[1 ]
61
- return p * SQ2OPI (T) / sqrt (x)
75
+ if x < 25.0
76
+ x< pi / 2 && return evalpoly (x* x, (0.9999999999999997 , - 0.24999999999998027 , 0.015624999999831789 , - 0.00043402777723176535 , 6.78168315716265e-6 , - 6.781608601544183e-8 , 4.705878468811015e-10 , - 2.311849729995118e-12 ))
77
+ n = round (Int, fma (2 / pi ,x,- 1 / 2 ))
78
+ root = @inbounds PTS[n]
79
+ r = x - root[1 ] - root[2 ]
80
+ return evalpoly (r, @inbounds POLYS[n])
62
81
else
63
82
if x < 120.0
64
83
p = (one (T), - 1 / 16 , 53 / 512 , - 4447 / 8192 , 3066403 / 524288 , - 896631415 / 8388608 , 796754802993 / 268435456 , - 500528959023471 / 4294967296 )
@@ -130,7 +149,7 @@ function besselj1(x::Float64)
130
149
return p * SQ2OPI (T) / sqrt (x)
131
150
else
132
151
if x < 120.0
133
- p = (one (T), 3 / 16 , - 99 / 512 , 6597 / 8192 , - 4057965 / 524288 , 1113686901 / 8388608 , - 951148335159 / 268435456 , 581513783771781 / 4294967296 )
152
+ p = (one (T), 3 / 16 , - 99 / 512 , 6597 / 8192 , - 4057965 / 524288 , 1113686901 / 8388608 , - 951148335159 / 268435456 , 581513783771781 / 4294967296 )
134
153
q = (3 / 8 , - 21 / 128 , 1899 / 5120 , - 543483 / 229376 , 8027901 / 262144 , - 30413055339 / 46137344 , 9228545313147 / 436207616 )
135
154
else
136
155
p = (one (T), 3 / 16 , - 99 / 512 , 6597 / 8192 )
0 commit comments