1
- function Uk_poly_Kn (p, v, p2, :: Type{Float32} )
2
- u0 = one (p)
3
- u1 = 1 / 24 * evalpoly (p2, (3 , - 5 ))
4
- u2 = 1 / 1152 * evalpoly (p2, (81 , - 462 , 385 ))
5
- return evalpoly (- p/ v, (u0, u1, u2))
6
- end
7
- function Uk_poly_Kn (p, v, p2, :: Type{T} ) where T <: Float64
8
- u0 = one (T)
9
- u1 = 1 / 24 * evalpoly (p2, (3 , - 5 ))
10
- u2 = 1 / 1152 * evalpoly (p2, (81 , - 462 , 385 ))
11
- u3 = 1 / 414720 * evalpoly (p2, (30375 , - 369603 , 765765 , - 425425 ))
12
- u4 = 1 / 39813120 * evalpoly (p2, (4465125 , - 94121676 , 349922430 , - 446185740 , 185910725 ))
13
- return evalpoly (- p/ v, (u0, u1, u2, u3, u4))
14
- end
15
- function Uk_poly_In (p, v, p2, :: Type{T} ) where T <: Float64
16
- u0 = one (T)
17
- u1 = - 1 / 24 * evalpoly (p2, (3 , - 5 ))
18
- u2 = 1 / 1152 * evalpoly (p2, (81 , - 462 , 385 ))
19
- u3 = - 1 / 414720 * evalpoly (p2, (30375 , - 369603 , 765765 , - 425425 ))
20
- u4 = 1 / 39813120 * evalpoly (p2, (4465125 , - 94121676 , 349922430 , - 446185740 , 185910725 ))
21
- return evalpoly (- p/ v, (u0, u1, u2, u3, u4))
22
- end
23
- function Uk_poly_In (p, v, p2, :: Type{Float32} )
24
- u0 = one (p)
25
- u1 = - 1 / 24 * evalpoly (p2, (3 , - 5 ))
26
- u2 = 1 / 1152 * evalpoly (p2, (81 , - 462 , 385 ))
27
- return evalpoly (- p/ v, (u0, u1, u2))
28
- end
29
-
30
-
31
- function Uk_poly_Jn (p, v, p2, x, :: Type{T} ) where T <: Float64
1
+ function Uk_poly_Jn (p, v, p2, x:: T ) where T <: Float64
32
2
if v > 5.0 + 1.00033 * x + (1427.61 * x)^ (1 / 3 )
33
- return Uk_poly_Jn10 (p, v, p2, T)
3
+ return Uk_poly11 (p, v, p2)[ 1 ]
34
4
else
35
- return Uk_poly_Jn20 (p, v, p2, T)
5
+ return Uk_poly21 (p, v, p2)[ 1 ]
36
6
end
37
7
end
38
8
39
- function Uk_poly_Jn10 (p, v, p2, :: Type{T} ) where T <: Float64
40
- u0 = one (T)
41
- u1 = - evalpoly (p2, (0.125 , - 0.20833333333333334 ))
9
+ Uk_poly_In (p, v, p2, :: Type{Float32} ) = Uk_poly3 (p, v, p2)[1 ]
10
+ Uk_poly_In (p, v, p2, :: Type{Float64} ) = Uk_poly5 (p, v, p2)[1 ]
11
+ Uk_poly_Kn (p, v, p2, :: Type{Float32} ) = Uk_poly3 (p, v, p2)[2 ]
12
+ Uk_poly_Kn (p, v, p2, :: Type{Float64} ) = Uk_poly5 (p, v, p2)[2 ]
13
+
14
+ @inline function split_evalpoly (x, P)
15
+ N = length (P)
16
+ xx = x* x
17
+
18
+ out = P[end ]
19
+ out2 = P[end - 1 ]
20
+
21
+ for i in N- 2 : - 2 : 1
22
+ out = muladd (xx, out, P[i])
23
+ out2 = muladd (xx, out2, P[i- 1 ])
24
+ end
25
+
26
+ out = x* out
27
+ return out2 - out, out2 + out
28
+ end
29
+ function Uk_poly3 (p, v, p2)
30
+ u0 = 1.0
31
+ u1 = evalpoly (p2, (0.125 , - 0.20833333333333334 ))
42
32
u2 = evalpoly (p2, (0.0703125 , - 0.4010416666666667 , 0.3342013888888889 ))
43
- u3 = - evalpoly (p2, (0.0732421875 , - 0.8912109375 , 1.8464626736111112 , - 1.0258125964506173 ))
33
+ u3 = evalpoly (p2, (0.0732421875 , - 0.8912109375 , 1.8464626736111112 , - 1.0258125964506173 ))
34
+
35
+ Poly = (u0, u1, u2, u3)
36
+
37
+ return split_evalpoly (- p/ v, Poly)
38
+ end
39
+ function Uk_poly5 (p, v, p2)
40
+ u0 = 1.0
41
+ u1 = evalpoly (p2, (0.125 , - 0.20833333333333334 ))
42
+ u2 = evalpoly (p2, (0.0703125 , - 0.4010416666666667 , 0.3342013888888889 ))
43
+ u3 = evalpoly (p2, (0.0732421875 , - 0.8912109375 , 1.8464626736111112 , - 1.0258125964506173 ))
44
44
u4 = evalpoly (p2, (0.112152099609375 , - 2.3640869140625 , 8.78912353515625 , - 11.207002616222994 , 4.669584423426247 ))
45
- u5 = - evalpoly (p2, (0.22710800170898438 , - 7.368794359479632 , 42.53499874538846 , - 91.81824154324002 , 84.63621767460073 , - 28.212072558200244 ))
45
+ u5 = evalpoly (p2, (0.22710800170898438 , - 7.368794359479632 , 42.53499874538846 , - 91.81824154324002 , 84.63621767460073 , - 28.212072558200244 ))
46
+
47
+ Poly = (u0, u1, u2, u3, u4, u5)
48
+ return split_evalpoly (- p/ v, Poly)
49
+ end
50
+
51
+ function Uk_poly11 (p, v, p2)
52
+ u0 = 1.0
53
+ u1 = evalpoly (p2, (0.125 , - 0.20833333333333334 ))
54
+ u2 = evalpoly (p2, (0.0703125 , - 0.4010416666666667 , 0.3342013888888889 ))
55
+ u3 = evalpoly (p2, (0.0732421875 , - 0.8912109375 , 1.8464626736111112 , - 1.0258125964506173 ))
56
+ u4 = evalpoly (p2, (0.112152099609375 , - 2.3640869140625 , 8.78912353515625 , - 11.207002616222994 , 4.669584423426247 ))
57
+ u5 = evalpoly (p2, (0.22710800170898438 , - 7.368794359479632 , 42.53499874538846 , - 91.81824154324002 , 84.63621767460073 , - 28.212072558200244 ))
46
58
u6 = evalpoly (p2, (0.5725014209747314 , - 26.491430486951554 , 218.1905117442116 , - 699.5796273761325 , 1059.9904525279999 , - 765.2524681411817 , 212.57013003921713 ))
47
- u7 = - evalpoly (p2, (1.7277275025844574 , - 108.09091978839466 , 1200.9029132163525 , - 5305.646978613403 , 11655.393336864534 , - 13586.550006434136 , 8061.722181737309 , - 1919.457662318407 ))
59
+ u7 = evalpoly (p2, (1.7277275025844574 , - 108.09091978839466 , 1200.9029132163525 , - 5305.646978613403 , 11655.393336864534 , - 13586.550006434136 , 8061.722181737309 , - 1919.457662318407 ))
48
60
u8 = evalpoly (p2, (6.074042001273483 , - 493.91530477308805 , 7109.514302489364 , - 41192.65496889755 , 122200.46498301747 , - 203400.17728041555 , 192547.00123253153 , - 96980.59838863752 , 20204.29133096615 ))
49
- u9 = - evalpoly (p2, (24.380529699556064 , - 2499.8304818112097 , 45218.76898136273 , - 331645.17248456355 , 1.2683652733216248e6 , - 2.8135632265865337e6 , 3.763271297656404e6 , - 2.998015918538107e6 , 1.3117636146629772e6 , - 242919.18790055133 ))
61
+ u9 = evalpoly (p2, (24.380529699556064 , - 2499.8304818112097 , 45218.76898136273 , - 331645.17248456355 , 1.2683652733216248e6 , - 2.8135632265865337e6 , 3.763271297656404e6 , - 2.998015918538107e6 , 1.3117636146629772e6 , - 242919.18790055133 ))
50
62
u10 = evalpoly (p2, (110.01714026924674 , - 13886.08975371704 , 308186.40461266245 , - 2.7856181280864547e6 , 1.3288767166421818e7 , - 3.7567176660763346e7 , 6.634451227472903e7 , - 7.410514821153265e7 , 5.095260249266464e7 , - 1.9706819118432228e7 , 3.284469853072038e6 ))
51
- return evalpoly (- p/ v, (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10))
63
+ u11 = evalpoly (p2, (551.3358961220206 , - 84005.4336030241 , 2.2437681779224495e6 , - 2.4474062725738727e7 , 1.420629077975331e8 , - 4.9588978427503026e8 , 1.1068428168230145e9 , - 1.6210805521083372e9 , 1.5535968995705802e9 , - 9.394623596815784e8 , 3.2557307418576574e8 , - 4.932925366450996e7 ))
64
+
65
+ Poly = (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11)
66
+
67
+ return split_evalpoly (- p/ v, Poly)
52
68
end
53
- function Uk_poly_Jn20 (p, v, p2, :: Type{T} ) where T <: Float64
54
- u0 = one (T)
55
- u1 = - evalpoly (p2, (0.125 , - 0.20833333333333334 ))
69
+
70
+ function Uk_poly21 (p, v, p2)
71
+ u0 = 1.0
72
+ u1 = evalpoly (p2, (0.125 , - 0.20833333333333334 ))
56
73
u2 = evalpoly (p2, (0.0703125 , - 0.4010416666666667 , 0.3342013888888889 ))
57
- u3 = - evalpoly (p2, (0.0732421875 , - 0.8912109375 , 1.8464626736111112 , - 1.0258125964506173 ))
74
+ u3 = evalpoly (p2, (0.0732421875 , - 0.8912109375 , 1.8464626736111112 , - 1.0258125964506173 ))
58
75
u4 = evalpoly (p2, (0.112152099609375 , - 2.3640869140625 , 8.78912353515625 , - 11.207002616222994 , 4.669584423426247 ))
59
- u5 = - evalpoly (p2, (0.22710800170898438 , - 7.368794359479632 , 42.53499874538846 , - 91.81824154324002 , 84.63621767460073 , - 28.212072558200244 ))
76
+ u5 = evalpoly (p2, (0.22710800170898438 , - 7.368794359479632 , 42.53499874538846 , - 91.81824154324002 , 84.63621767460073 , - 28.212072558200244 ))
60
77
u6 = evalpoly (p2, (0.5725014209747314 , - 26.491430486951554 , 218.1905117442116 , - 699.5796273761325 , 1059.9904525279999 , - 765.2524681411817 , 212.57013003921713 ))
61
- u7 = - evalpoly (p2, (1.7277275025844574 , - 108.09091978839466 , 1200.9029132163525 , - 5305.646978613403 , 11655.393336864534 , - 13586.550006434136 , 8061.722181737309 , - 1919.457662318407 ))
78
+ u7 = evalpoly (p2, (1.7277275025844574 , - 108.09091978839466 , 1200.9029132163525 , - 5305.646978613403 , 11655.393336864534 , - 13586.550006434136 , 8061.722181737309 , - 1919.457662318407 ))
62
79
u8 = evalpoly (p2, (6.074042001273483 , - 493.91530477308805 , 7109.514302489364 , - 41192.65496889755 , 122200.46498301747 , - 203400.17728041555 , 192547.00123253153 , - 96980.59838863752 , 20204.29133096615 ))
63
- u9 = - evalpoly (p2, (24.380529699556064 , - 2499.8304818112097 , 45218.76898136273 , - 331645.17248456355 , 1.2683652733216248e6 , - 2.8135632265865337e6 , 3.763271297656404e6 , - 2.998015918538107e6 , 1.3117636146629772e6 , - 242919.18790055133 ))
80
+ u9 = evalpoly (p2, (24.380529699556064 , - 2499.8304818112097 , 45218.76898136273 , - 331645.17248456355 , 1.2683652733216248e6 , - 2.8135632265865337e6 , 3.763271297656404e6 , - 2.998015918538107e6 , 1.3117636146629772e6 , - 242919.18790055133 ))
64
81
u10 = evalpoly (p2, (110.01714026924674 , - 13886.08975371704 , 308186.40461266245 , - 2.7856181280864547e6 , 1.3288767166421818e7 , - 3.7567176660763346e7 , 6.634451227472903e7 , - 7.410514821153265e7 , 5.095260249266464e7 , - 1.9706819118432228e7 , 3.284469853072038e6 ))
65
- u11 = - evalpoly (p2, (551.3358961220206 , - 84005.4336030241 , 2.2437681779224495e6 , - 2.4474062725738727e7 , 1.420629077975331e8 , - 4.9588978427503026e8 , 1.1068428168230145e9 , - 1.6210805521083372e9 , 1.5535968995705802e9 , - 9.394623596815784e8 , 3.2557307418576574e8 , - 4.932925366450996e7 ))
82
+ u11 = evalpoly (p2, (551.3358961220206 , - 84005.4336030241 , 2.2437681779224495e6 , - 2.4474062725738727e7 , 1.420629077975331e8 , - 4.9588978427503026e8 , 1.1068428168230145e9 , - 1.6210805521083372e9 , 1.5535968995705802e9 , - 9.394623596815784e8 , 3.2557307418576574e8 , - 4.932925366450996e7 ))
66
83
u12 = evalpoly (p2, (3038.090510922384 , - 549842.3275722887 , 1.7395107553978164e7 , - 2.2510566188941526e8 , 1.5592798648792574e9 , - 6.563293792619285e9 , 1.79542137311556e10 , - 3.3026599749800724e10 , 4.1280185579753975e10 , - 3.4632043388158775e10 , 1.8688207509295826e10 , - 5.866481492051847e9 , 8.147890961183121e8 ))
67
- u13 = - evalpoly (p2, (18257.755474293175 , - 3.8718334425726123e6 , 1.43157876718889e8 , - 2.167164983223795e9 , 1.763473060683497e10 , - 8.786707217802327e10 , 2.879006499061506e11 , - 6.453648692453765e11 , 1.0081581068653821e12 , - 1.0983751560812233e12 , 8.192186695485773e11 , - 3.990961752244665e11 , 1.144982377320258e11 , - 1.4679261247695616e10 ))
84
+ u13 = evalpoly (p2, (18257.755474293175 , - 3.8718334425726123e6 , 1.43157876718889e8 , - 2.167164983223795e9 , 1.763473060683497e10 , - 8.786707217802327e10 , 2.879006499061506e11 , - 6.453648692453765e11 , 1.0081581068653821e12 , - 1.0983751560812233e12 , 8.192186695485773e11 , - 3.990961752244665e11 , 1.144982377320258e11 , - 1.4679261247695616e10 ))
68
85
u14 = evalpoly (p2, (118838.42625678326 , - 2.9188388122220814e7 , 1.2470092935127103e9 , - 2.1822927757529224e10 , 2.0591450323241e11 , - 1.1965528801961816e12 , 4.612725780849132e12 , - 1.2320491305598287e13 , 2.334836404458184e13 , - 3.166708858478516e13 , 3.056512551993532e13 , - 2.0516899410934438e13 , 9.109341185239898e12 , - 2.406297900028504e12 , 2.86464035717679e11 ))
69
- u15 = - evalpoly (p2, (832859.3040162893 , - 2.3455796352225152e8 , 1.1465754899448236e10 , - 2.2961937296824646e11 , 2.4850009280340854e12 , - 1.663482472489248e13 , 7.437312290867914e13 , - 2.3260483118893994e14 , 5.230548825784446e14 , - 8.57461032982895e14 , 1.0269551960827625e15 , - 8.894969398810265e14 , 5.4273966498765975e14 , - 2.213496387025252e14 , 5.417751075510605e13 , - 6.019723417234006e12 ))
86
+ u15 = evalpoly (p2, (832859.3040162893 , - 2.3455796352225152e8 , 1.1465754899448236e10 , - 2.2961937296824646e11 , 2.4850009280340854e12 , - 1.663482472489248e13 , 7.437312290867914e13 , - 2.3260483118893994e14 , 5.230548825784446e14 , - 8.57461032982895e14 , 1.0269551960827625e15 , - 8.894969398810265e14 , 5.4273966498765975e14 , - 2.213496387025252e14 , 5.417751075510605e13 , - 6.019723417234006e12 ))
70
87
u16 = evalpoly (p2, (6.252951493434797e6 , - 2.0016469281917763e9 , 1.1099740513917902e11 , - 2.5215584749128545e12 , 3.100743647289646e13 , - 2.3665253045164925e14 , 1.2126758042503475e15 , - 4.3793258383640155e15 , 1.1486706978449752e16 , - 2.2268225133911144e16 , 3.213827526858624e16 , - 3.4447226006485144e16 , 2.705471130619708e16 , - 1.5129826322457682e16 , 5.705782159023671e15 , - 1.3010127235496995e15 , 1.3552215870309369e14 ))
71
- u17 = - evalpoly (p2, (5.0069589531988926e7 , - 1.8078220384658062e10 , 1.128709145410874e12 , - 2.886383763141476e13 , 4.0004445704303625e14 , - 3.4503855118462725e15 , 2.0064271476309532e16 , - 8.270945651585064e16 , 2.4960365126160426e17 , - 5.62631788074636e17 , 9.575335098169139e17 , - 1.2336116931960694e18 , 1.1961991142756308e18 , - 8.592577980317548e17 , 4.4347954614171904e17 , - 1.5552983504313904e17 , 3.3192764720355224e16 , - 3.254192619642669e15 ))
88
+ u17 = evalpoly (p2, (5.0069589531988926e7 , - 1.8078220384658062e10 , 1.128709145410874e12 , - 2.886383763141476e13 , 4.0004445704303625e14 , - 3.4503855118462725e15 , 2.0064271476309532e16 , - 8.270945651585064e16 , 2.4960365126160426e17 , - 5.62631788074636e17 , 9.575335098169139e17 , - 1.2336116931960694e18 , 1.1961991142756308e18 , - 8.592577980317548e17 , 4.4347954614171904e17 , - 1.5552983504313904e17 , 3.3192764720355224e16 , - 3.254192619642669e15 ))
72
89
u18 = evalpoly (p2, (4.259392165047669e8 , - 1.722832387173505e11 , 1.2030115826419191e13 , - 3.4396530474307594e14 , 5.335106978708839e15 , - 5.1605093193485224e16 , 3.37667624979061e17 , - 1.5736434765189599e18 , 5.402894876715982e18 , - 1.3970803516443374e19 , 2.757282981650519e19 , - 4.178861444656839e19 , 4.859942729324836e19 , - 4.301555703831444e19 , 2.846521225167657e19 , - 1.3639420410571592e19 , 4.47020096401231e18 , - 8.966114215270463e17 , 8.30195760673191e16 ))
73
- u19 = - evalpoly (p2, (3.8362551802304335e9 , - 1.7277040123529995e12 , 1.3412416915180639e14 , - 4.2619355104268985e15 , 7.351663610930971e16 , - 7.921651119323832e17 , 5.789887667664653e18 , - 3.025566598990372e19 , 1.1707490535797259e20 , - 3.434621399768417e20 , 7.756704953461136e20 , - 1.360203777284994e21 , 1.8571089321463453e21 , - 1.9677247077053125e21 , 1.6016898573693598e21 , - 9.824438427689858e20 , 4.392792200888712e20 , - 1.351217503435996e20 , 2.5563802960529236e19 , - 2.242438856186775e18 ))
90
+ u19 = evalpoly (p2, (3.8362551802304335e9 , - 1.7277040123529995e12 , 1.3412416915180639e14 , - 4.2619355104268985e15 , 7.351663610930971e16 , - 7.921651119323832e17 , 5.789887667664653e18 , - 3.025566598990372e19 , 1.1707490535797259e20 , - 3.434621399768417e20 , 7.756704953461136e20 , - 1.360203777284994e21 , 1.8571089321463453e21 , - 1.9677247077053125e21 , 1.6016898573693598e21 , - 9.824438427689858e20 , 4.392792200888712e20 , - 1.351217503435996e20 , 2.5563802960529236e19 , - 2.242438856186775e18 ))
74
91
u20 = evalpoly (p2, (3.646840080706556e10 , - 1.818726203851104e13 , 1.5613123930484672e15 , - 5.48403360388329e16 , 1.0461721131134344e18 , - 1.2483700995047234e19 , 1.0126774169536592e20 , - 5.8917941350694964e20 , 2.548961114664972e21 , - 8.405915817108351e21 , 2.1487414815055883e22 , - 4.302534303482379e22 , 6.783661642951883e22 , - 8.423222750084323e22 , 8.19433100543513e22 , - 6.173206302884415e22 , 3.528435843903409e22 , - 1.4787743528433614e22 , 4.285296082829494e21 , - 7.671943936729004e20 , 6.393286613940837e19 ))
75
- return evalpoly (- p/ v, (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15, u16, u17, u18, u19, u20))
92
+ u21 = evalpoly (p2, (3.6490108188498334e11 , - 2.0052440123627112e14 , 1.894406984252143e16 , - 7.319501491566134e17 , 1.5365025218443373e19 , - 2.0197335419300872e20 , 1.8081594057131945e21 , - 1.1640246461465369e22 , 5.591591380366263e22 , - 2.0566149136271542e23 , 5.8965434619782445e23 , - 1.3337178907798302e24 , 2.3967237744351682e24 , - 3.430872898515746e24 , 3.905264103536985e24 , - 3.511096528332644e24 , 2.461506085403875e24 , - 1.3170969618092387e24 , 5.194289094766812e23 , - 1.4228394823321413e23 , 2.417461500896379e22 , - 1.91862023880665e21 ))
93
+
94
+ Poly = (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15, u16, u17, u18, u19, u20, u21)
95
+
96
+ return split_evalpoly (- p/ v, Poly)
76
97
end
77
98
78
- function Uk_poly_Jn (p, v, p2, x, :: Type{T} ) where T <: BigFloat
99
+ function Uk_poly_Jn (p, v, p2, x:: T ) where T <: BigFloat
79
100
u0 = one (T)
80
101
u1 = - evalpoly (p2, (3 , - 5 )) / 24
81
102
u2 = evalpoly (p2, (81 , - 462 , 385 )) / 1152
@@ -101,22 +122,6 @@ function Uk_poly_Jn(p, v, p2, x, ::Type{T}) where T <: BigFloat
101
122
return evalpoly (- p/ v, (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15, u16, u17, u18, u19, u20, u21))
102
123
end
103
124
#=
104
- function Uk_poly_Kn(p, v, p2, ::Type{T}) where T <: BigFloat
105
- u0 = one(T)
106
- u1 = 1 / 24 * evalpoly(p2, (3, -5))
107
- u2 = 1 / 1152 * evalpoly(p2, (81, -462, 385))
108
- u3 = 1 / 414720 * evalpoly(p2, (30375, -369603, 765765, -425425))
109
- u4 = 1 / 39813120 * evalpoly(p2, (4465125, -94121676, 349922430, -446185740, 185910725))
110
- u5 = 1 / 6688604160 * evalpoly(p2, (1519035525, -49286948607, 284499769554, -614135872350, 566098157625, -188699385875))
111
- u6 = 1 / 4815794995200 * evalpoly(p2, (2757049477875, -127577298354750, 1050760774457901, -3369032068261860,5104696716244125, -3685299006138750, 1023694168371875))
112
- u7 = 1 / 115579079884800 * evalpoly(p2, (199689155040375, -12493049053044375, 138799253740521843, -613221795981706275, 1347119637570231525, -1570320948552481125, 931766432052080625, -221849150488590625))
113
- u8 = 1 / 22191183337881600 * evalpoly(p2, (134790179652253125, -10960565081605263000, 157768535329832893644, -914113758588905038248, 2711772922412520971550, -4513690624987320777000, 4272845805510421639500, -2152114239059719935000, 448357133137441653125))
114
- u9 = 1 / 263631258054033408000 * evalpoly(p2, (6427469716717690265625, -659033454841709672064375, 11921080954211358275362500, -87432034049652400520788332, 334380732677827878090447630, -741743213039573443221773250, 992115946599792610768672500, -790370708270219620781737500, 345821892003106984030190625, -64041091111686478524109375))
115
- u10 = 1 / 88580102706155225088000 * evalpoly(p2, (9745329584487361980740625, -1230031256571145165088463750, 27299183373230345667273718125, -246750339886026017414509498824, 1177120360439828012193658602930, -3327704366990695147540934069220, 5876803711285273203043452095250, -6564241639632418015173104205000, 4513386761946134740461797128125, -1745632061522350031610173343750, 290938676920391671935028890625))
116
- return evalpoly(-p/v, (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10))
117
- end
118
-
119
-
120
125
u0 = one(x)
121
126
u1 = p / 24 * (3 - 5*p^2) * -1 / v
122
127
u2 = p^2 / 1152 * (81 - 462*p^2 + 385*p^4) / v^2
144
149
+ 5136561256208409671660362298619778869859994724706875*p^16 - 2284251621937242886581917667066122422330060024456125*p^14 + 730367145705123976114617970888707594104468177381925*p^12 - 163359140754958502896104062604202934925448173291477*p^10
145
150
+ 24403480234538299231733883413666768614198435948125*p^8 - 2254933495791765108580529087615802250458013685625*p^6 + 112597271053778779753048514469995937998172890625*p^4 - 2303431987527333128955769182299845911305390625*p^2 + 8178936810213560828419581728001773291015625) * -1 / v^15
146
151
147
-
148
-
149
152
function Uk_poly_Jn(p, v, p2, ::Type{T}) where T <: Float64
150
153
u0 = one(T)
151
154
u1 = -evalpoly(p2, (0.125, -0.20833333333333334))
0 commit comments