|
| 1 | +function Uk_poly_Kn(p, v, p2, ::Type{Float32}) |
| 2 | + u0 = one(p) |
| 3 | + u1 = 1 / 24 * evalpoly(p2, (3, -5)) |
| 4 | + u2 = 1 / 1152 * evalpoly(p2, (81, -462, 385)) |
| 5 | + u3 = 1 / 414720 * evalpoly(p2, (30375, -369603, 765765, -425425)) |
| 6 | + u4 = 1 / 39813120 * evalpoly(p2, (4465125, -94121676, 349922430, -446185740, 185910725)) |
| 7 | + return evalpoly(-p/v, (u0, u1, u2, u3, u4)) |
| 8 | +end |
| 9 | +function Uk_poly_Kn(p, v, p2, ::Type{T}) where T <: Float64 |
| 10 | + u0 = one(T) |
| 11 | + u1 = 1 / 24 * evalpoly(p2, (3, -5)) |
| 12 | + u2 = 1 / 1152 * evalpoly(p2, (81, -462, 385)) |
| 13 | + u3 = 1 / 414720 * evalpoly(p2, (30375, -369603, 765765, -425425)) |
| 14 | + u4 = 1 / 39813120 * evalpoly(p2, (4465125, -94121676, 349922430, -446185740, 185910725)) |
| 15 | + u5 = 1 / 6688604160 * evalpoly(p2, (1519035525, -49286948607, 284499769554, -614135872350, 566098157625, -188699385875)) |
| 16 | + u6 = 1 / 4815794995200 * evalpoly(p2, (2757049477875, -127577298354750, 1050760774457901, -3369032068261860,5104696716244125, -3685299006138750, 1023694168371875)) |
| 17 | + return evalpoly(-p/v, (u0, u1, u2, u3, u4, u5, u6)) |
| 18 | +end |
| 19 | +function Uk_poly_In(p, v, p2, ::Type{T}) where T <: Float64 |
| 20 | + u0 = one(T) |
| 21 | + u1 = -1 / 24 * evalpoly(p2, (3, -5)) |
| 22 | + u2 = 1 / 1152 * evalpoly(p2, (81, -462, 385)) |
| 23 | + u3 = -1 / 414720 * evalpoly(p2, (30375, -369603, 765765, -425425)) |
| 24 | + u4 = 1 / 39813120 * evalpoly(p2, (4465125, -94121676, 349922430, -446185740, 185910725)) |
| 25 | + u5 = -1 / 6688604160 * evalpoly(p2, (1519035525, -49286948607, 284499769554, -614135872350, 566098157625, -188699385875)) |
| 26 | + u6 = 1 / 4815794995200 * evalpoly(p2, (2757049477875, -127577298354750, 1050760774457901, -3369032068261860,5104696716244125, -3685299006138750, 1023694168371875)) |
| 27 | + return evalpoly(-p/v, (u0, u1, u2, u3, u4, u5, u6)) |
| 28 | +end |
| 29 | +function Uk_poly_In(p, v, p2, ::Type{Float32}) |
| 30 | + u0 = one(p) |
| 31 | + u1 = -1 / 24 * evalpoly(p2, (3, -5)) |
| 32 | + u2 = 1 / 1152 * evalpoly(p2, (81, -462, 385)) |
| 33 | + u3 = -1 / 414720 * evalpoly(p2, (30375, -369603, 765765, -425425)) |
| 34 | + u4 = 1 / 39813120 * evalpoly(p2, (4465125, -94121676, 349922430, -446185740, 185910725)) |
| 35 | + return evalpoly(-p/v, (u0, u1, u2, u3, u4)) |
| 36 | + end |
| 37 | + |
| 38 | +#= |
| 39 | +function Uk_poly_Kn(p, v, p2, ::Type{T}) where T <: BigFloat |
| 40 | + u0 = one(T) |
| 41 | + u1 = 1 / 24 * evalpoly(p2, (3, -5)) |
| 42 | + u2 = 1 / 1152 * evalpoly(p2, (81, -462, 385)) |
| 43 | + u3 = 1 / 414720 * evalpoly(p2, (30375, -369603, 765765, -425425)) |
| 44 | + u4 = 1 / 39813120 * evalpoly(p2, (4465125, -94121676, 349922430, -446185740, 185910725)) |
| 45 | + u5 = 1 / 6688604160 * evalpoly(p2, (1519035525, -49286948607, 284499769554, -614135872350, 566098157625, -188699385875)) |
| 46 | + u6 = 1 / 4815794995200 * evalpoly(p2, (2757049477875, -127577298354750, 1050760774457901, -3369032068261860,5104696716244125, -3685299006138750, 1023694168371875)) |
| 47 | + u7 = 1 / 115579079884800 * evalpoly(p2, (199689155040375, -12493049053044375, 138799253740521843, -613221795981706275, 1347119637570231525, -1570320948552481125, 931766432052080625, -221849150488590625)) |
| 48 | + u8 = 1 / 22191183337881600 * evalpoly(p2, (134790179652253125, -10960565081605263000, 157768535329832893644, -914113758588905038248, 2711772922412520971550, -4513690624987320777000, 4272845805510421639500, -2152114239059719935000, 448357133137441653125)) |
| 49 | + u9 = 1 / 263631258054033408000 * evalpoly(p2, (6427469716717690265625, -659033454841709672064375, 11921080954211358275362500, -87432034049652400520788332, 334380732677827878090447630, -741743213039573443221773250, 992115946599792610768672500, -790370708270219620781737500, 345821892003106984030190625, -64041091111686478524109375)) |
| 50 | + u10 = 1 / 88580102706155225088000 * evalpoly(p2, (9745329584487361980740625, -1230031256571145165088463750, 27299183373230345667273718125, -246750339886026017414509498824, 1177120360439828012193658602930, -3327704366990695147540934069220, 5876803711285273203043452095250, -6564241639632418015173104205000, 4513386761946134740461797128125, -1745632061522350031610173343750, 290938676920391671935028890625)) |
| 51 | + return evalpoly(-p/v, (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10)) |
| 52 | +end |
| 53 | +
|
| 54 | +
|
| 55 | + u0 = one(x) |
| 56 | + u1 = p / 24 * (3 - 5*p^2) * -1 / v |
| 57 | + u2 = p^2 / 1152 * (81 - 462*p^2 + 385*p^4) / v^2 |
| 58 | + u3 = p^3 / 414720 * (30375 - 369603 * p^2 + 765765*p^4 - 425425*p^6) * -1 / v^3 |
| 59 | + u4 = p^4 / 39813120 * (4465125 - 94121676*p^2 + 349922430*p^4 - 446185740*p^6 + 185910725*p^8) / v^4 |
| 60 | + u5 = p^5 / 6688604160 * (-188699385875*p^10 + 566098157625*p^8 - 614135872350*p^6 + 284499769554*p^4 - 49286948607*p^2 + 1519035525) * -1 / v^5 |
| 61 | + u6 = p^6 / 4815794995200 * (1023694168371875*p^12 - 3685299006138750*p^10 + 5104696716244125*p^8 - 3369032068261860*p^6 + 1050760774457901*p^4 - 127577298354750*p^2 + 2757049477875) * 1 / v^6 |
| 62 | + u7 = p^7 / 115579079884800 * (-221849150488590625*p^14 + 931766432052080625*p^12 - 1570320948552481125*p^10 + 1347119637570231525*p^8 - 613221795981706275*p^6 + 138799253740521843*p^4 - 12493049053044375*p^2 + 199689155040375) * -1 / v^7 |
| 63 | + u8 = p^8 / 22191183337881600 * (448357133137441653125*p^16 - 2152114239059719935000*p^14 + 4272845805510421639500*p^12 - 4513690624987320777000*p^10 + 2711772922412520971550*p^8 - 914113758588905038248*p^6 + 157768535329832893644*p^4 - 10960565081605263000*p^2 + 134790179652253125) * 1 / v^8 |
| 64 | + u9 = p^9 / 263631258054033408000 * (-64041091111686478524109375*p^18 + 345821892003106984030190625*p^16 - 790370708270219620781737500*p^14 + 992115946599792610768672500*p^12 - 741743213039573443221773250*p^10 + 334380732677827878090447630*p^8 - 87432034049652400520788332*p^6 + 11921080954211358275362500*p^4 - 659033454841709672064375*p^2 + 6427469716717690265625) * -1 / v^9 |
| 65 | + u10 = p^10 / 88580102706155225088000 * (290938676920391671935028890625*p^20 - 1745632061522350031610173343750*p^18 + 4513386761946134740461797128125*p^16 - 6564241639632418015173104205000*p^14 + 5876803711285273203043452095250*p^12 - 3327704366990695147540934069220*p^10 + 1177120360439828012193658602930*p^8 - 246750339886026017414509498824*p^6 + 27299183373230345667273718125*p^4 - 1230031256571145165088463750*p^2 + 9745329584487361980740625) * 1 / v^10 |
| 66 | + u11 = p^11 / 27636992044320430227456000 * (-1363312191078326248171914924296875*p^22 + 8997860461116953237934638500359375*p^20 - 25963913760458280822131901737878125*p^18 + 42936745153513007436411401865860625*p^16 - 44801790321820682384740638703320750*p^14 + 30589806122850866110941936529264950*p^12 - 13704902022868787041097596217578170*p^10 |
| 67 | + + 3926191452593448964331218647028194*p^8 - 676389476843440422173605288596087*p^6 + 62011003282542082472252466220875*p^4 - 2321657500166464779660536015625*p^2 + 15237265774872558064250728125) * -1 / v^11 |
| 68 | + u12 = p^12 / 39797268543821419527536640000 * (32426380464797989812768996474401171875*p^24 - 233469939346545526651936774615688437500*p^22 + 743739612850105971846901081692858843750*p^20 - 1378260730939829908037976894025628887500*p^18 + 1642838631056253395899341314188134178125*p^16 - 1314368459332124683504418467809129387000*p^14 |
| 69 | + + 714528665351965363868467348116538170900*p^12 - 261201165596865827608687437905740780920*p^10 + 62055079517573388459132793029571876461*p^8 - 8958590476947726766450604043798559500*p^6 + 692277766674325563109617997687563750*p^4 - 21882222767154197351962677311437500*p^2 + 120907703923613748239829527671875) * 1 / v^12 |
| 70 | + u13 = p^13 / 955134445051714068660879360000 * (-14020668045586884672121117629431460546875*p^26 + 109361210755577700442544717509565392265625*p^24 - 381190503845282445953419057314665534156250*p^22 + 782463969315283937856703223178540650343750*p^20 |
| 71 | + - 1049095945162229046324321461816274931715625*p^18 + 962926533925253374359704288384340809260875*p^16 - 616410216242554698436702353237166008656700*p^14 + 274983827478138958623041508409195988431140*p^12 - 83924867223075156862785921508524155665245*p^10 |
| 72 | + + 16843538631795795357786827345307534156063*p^8 - 2069933923586966756183324291232117362250*p^6 + 136735019134677724428035696765082813750*p^4 - 3698121486504259988094897605296209375*p^2 + 17438611142828905996129258798828125) * -1 / v^13 |
| 73 | + u14 = p^14 / 45846453362482275295722209280000 * (13133360053559028970728309756597440972265625*p^28 - 110320224449895843354117801955418504167031250*p^26 + 417630985812040040477569028872405152769921875*p^24 |
| 74 | + - 940627071986145750405920450097257805227812500*p^22 + 1401302601668131482630653233972052729323190625*p^20 - 1451823699927947602004297385351260623500372750*p^18 + 1070439683260179398514645952824098811025619475*p^16 |
| 75 | + - 564850830044980230366140582063618983657685400*p^14 + 211477117385619365164298957821904115470535555*p^12 - 54857705817658080981995319669299096598482382*p^10 + 9440449669103391509091075981237243128469201*p^8 |
| 76 | + - 1000503839668383458999731491914516564625300*p^6 + 57170953417612444837142230812990944671875*p^4 - 1338184074771428116079233795614103631250*p^2 + 5448320367052402487647812713291015625) * 1 / v^14 |
| 77 | + u15 = p^15 / 9820310310243703368343697227776000000 * (- 59115551939078562227317999668652486368337724609375*p^30 + 532039967451707060045861997017872377315039521484375*p^28 - 2173722139119126857509156976742601742357422740234375*p^26 |
| 78 | + + 5329871927856528282113994744458999865006055974609375*p^24 - 8735135969643867540297524795790262235822823374296875*p^22 + 10085018700249896522602267572484630409640764997271875*p^20 - 8420533422834140468835467666391400380550043688871875*p^18 |
| 79 | + + 5136561256208409671660362298619778869859994724706875*p^16 - 2284251621937242886581917667066122422330060024456125*p^14 + 730367145705123976114617970888707594104468177381925*p^12 - 163359140754958502896104062604202934925448173291477*p^10 |
| 80 | + + 24403480234538299231733883413666768614198435948125*p^8 - 2254933495791765108580529087615802250458013685625*p^6 + 112597271053778779753048514469995937998172890625*p^4 - 2303431987527333128955769182299845911305390625*p^2 + 8178936810213560828419581728001773291015625) * -1 / v^15 |
| 81 | +
|
| 82 | +=# |
0 commit comments