You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
besselk_power_series_cutoff(nu, x::Float64) = x <2.0|| nu >1.6x -1.0
432
435
besselk_power_series_cutoff(nu, x::Float32) = x <10.0f0|| nu >1.65f0*x -8.0f0
433
436
437
+
438
+
"""
439
+
besselk_asymptoticexp(v, x, order)
440
+
441
+
Computes the asymptotic expansion of K_ν w.r.t. argument. Accurate for large x, and faster than uniform asymptotic expansion for small to small-ish orders. The default order of the expansion in `Bessels.besselk` is 10.
442
+
"""
443
+
besselk_asexp_cutoff(nu, x::T) where T = (nu <20.0) && (x >ASEXP_CUTOFF(T))
444
+
445
+
functionbesselk_large_argument(v, x::T) where T
446
+
a =exp(-x /2)
447
+
coef = a *sqrt(pi/2x)
448
+
returnT(_besselk_large_argument(v, x) * coef * a)
449
+
end
450
+
451
+
besselk_large_argument_scaled(v, x::T) where T =T(_besselk_large_argument(v, x) *sqrt(pi/2x))
0 commit comments