@@ -151,41 +151,72 @@ function besselj1(x::Float32)
151
151
end
152
152
end
153
153
154
- function besselj_large_argument (v, x:: T ) where T
154
+ function _α_αp_asymptotic (v, x:: T ) where T
155
155
μ = 4 * v^ 2
156
156
s0 = 1
157
157
s1 = (1 - μ) / 8
158
- s2 = (- μ^ 2 + 26 μ - 25 ) / 128
159
- s3 = (- μ^ 3 + 115 μ^ 2 - 1187 μ + 1073 ) / 1024
160
- s4 = (- 5 μ^ 4 + 1540 μ^ 3 - 56238 μ^ 2 + 430436 μ - 375733 ) / 32768
161
- s5 = (- 7 μ^ 5 + 4515 μ^ 4 - 397190 μ^ 3 + 9716998 μ^ 2 - 64709091 μ + 55384775 ) / 262144
162
- s6 = (- 21 μ^ 6 + 24486 μ^ 5 - 4238531 μ^ 4 + 235370036 μ^ 3 - 4733751627 μ^ 2 + 29215626566 μ - 24713030909 ) / 4194304
163
- s7 = (- 33 μ^ 7 + 63063 μ^ 6 - 18939349 μ^ 5 + 1989535379 μ^ 4 - 87480924739 μ^ 3 + 1573356635461 μ^ 2 - 9268603618823 μ + 7780757249041 ) / 33554432
164
- s8 = (- 429 μ^ 8 + 1252680 μ^ 7 - 598859404 μ^ 6 + 106122595896 μ^ 5 - 8593140373614 μ^ 4 + 329343318168440 μ^ 3 - 5517359285625804 μ^ 2 + 31505470994964360 μ - 26308967412122125 ) / 2147483648
165
- s9 = (- 715 μ^ 9 + 3026595 μ^ 8 - 2163210764 μ^ 7 + 597489288988 μ^ 6 - 79979851361130 μ^ 5 + 5536596631240042 μ^ 4 - 194026764558396188 μ^ 3 + 3095397360215483916 μ^ 2 - 17285630127691126691 μ + 14378802319925055947 ) / 17179869184
166
- s10 = (- 2431 μ^ 10 + 14318590 μ^ 9 - 14587179035 μ^ 8 + 5925778483368 μ^ 7 - 1216961874423502 μ^ 6 + 137164402798287604 μ^ 5 - 8556293060689145118 μ^ 4 + 281576004385356401192 μ^ 3 - 4334421752432088249971 μ^ 2 + 23801928703130666089534 μ - 19740662615375374580231 ) / 274877906944
167
- s11 = (- 4199 μ^ 11 + 33302269 μ^ 10 - 46575001473 μ^ 9 + 26616800349043 μ^ 8 - 7938052610367302 μ^ 7 + 1355921534379626242 μ^ 6 - 136097258378143928354 μ^ 5 + 7882145023568373727078 μ^ 4 - 247560495216085669748963 μ^ 3 + 3708133715826433118900337 μ^ 2 - 20097626064642945009122253 μ + 16629305448257355302267575 ) / 2199023255552
168
- s12 = (- 29393 μ^ 12 + 305569628 μ^ 11 - 569135407698 μ^ 10 + 441734362333708 μ^ 9 - 183408097342762543 μ^ 8 + 45038004674954790968 μ^ 7 - 6784356890740220944060 μ^ 6 + 626292216963766324300664 μ^ 5 - 34303895772550410316410943 μ^ 4 + 1039206680182498322210164588 μ^ 3 - 15233583205322702897380357650 μ^ 2 + 81699279492428006742420030332 μ - 67471218624230362526181277601 ) / 70368744177664
169
-
170
-
171
- αp = s0 + s1/ x^ 2 + s2/ x^ 4 + s3/ x^ 6 + s4/ x^ 8 + s5/ x^ 10 + s6/ x^ 12 + s7/ x^ 14 + s8/ x^ 16 + s9/ x^ 18 + s10/ x^ 20 + s11/ x^ 22 + s12/ x^ 24
172
- α = s0* x - s1/ x - s2/ 3 x^ 3 - s3/ 5 x^ 5 - s4/ 7 x^ 7 - s5/ 9 x^ 9 - s6/ 11 x^ 11 - s7/ 13 x^ 13 - s8/ 15 x^ 15 - s9/ 17 x^ 17 - s10/ 19 x^ 19 - s11/ 21 x^ 21 - s12/ 23 x^ 23
173
-
158
+ s2 = evalpoly (μ, (- 25 , 26 , - 1 )) / 128
159
+ s3 = evalpoly (μ, (1073 , - 1187 , 115 , - 1 )) / 1024
160
+ s4 = evalpoly (μ, (- 375733 , 430436 , - 56238 , 1540 , - 5 )) / 32768
161
+ s5 = evalpoly (μ, (55384775 , - 64709091 , 9716998 , - 397190 , 4515 , - 7 )) / 262144
162
+ s6 = evalpoly (μ, (- 24713030909 , 29215626566 , - 4733751627 , 235370036 , - 4238531 , 24486 , - 21 )) / 4194304
163
+
164
+ if x < 15 * v
165
+ s7 = evalpoly (μ, (7780757249041 , - 9268603618823 , 1573356635461 , - 87480924739 , 1989535379 , - 18939349 , 63063 , - 33 )) / 33554432
166
+ s8 = evalpoly (μ, (- 26308967412122125 , 31505470994964360 , - 5517359285625804 , 329343318168440 , - 8593140373614 , 106122595896 , - 598859404 , 1252680 , - 429 )) / 2147483648
167
+ s9 = evalpoly (μ, (14378802319925055947 , - 17285630127691126691 , 3095397360215483916 , - 194026764558396188 , 5536596631240042 , - 79979851361130 , 597489288988 , - 2163210764 , 3026595 , - 715 )) / 17179869184
168
+ s10 = evalpoly (μ, (- 19740662615375374580231 , 23801928703130666089534 , - 4334421752432088249971 , 281576004385356401192 , - 8556293060689145118 , 137164402798287604 , - 1216961874423502 , 5925778483368 , - 14587179035 , 14318590 , - 2431 )) / 274877906944
169
+ s11 = evalpoly (μ, (16629305448257355302267575 , - 20097626064642945009122253 , 3708133715826433118900337 , - 247560495216085669748963 , 7882145023568373727078 , - 136097258378143928354 , 1355921534379626242 , - 7938052610367302 , 26616800349043 , - 46575001473 , 33302269 , - 4199 )) / 2199023255552
170
+ s12 = evalpoly (μ, (- 67471218624230362526181277601 , 81699279492428006742420030332 , - 15233583205322702897380357650 , 1039206680182498322210164588 , - 34303895772550410316410943 , 626292216963766324300664 , - 6784356890740220944060 , 45038004674954790968 , - 183408097342762543 , 441734362333708 , - 569135407698 , 305569628 , - 29393 )) / 70368744177664
171
+ s13 = evalpoly (μ, (81121053093143918050102987600099 , - 98383136980007985475571939027975 , 18503851640550924693860888790250 , - 1284587641197372537980918233562 , 43642612323123398148213493825 , - 832261743620394930038568309 , 9606500048207046619311900 , - 69893489053616393418780 , 325411350127146969525 , - 959952773579760385 , 1717262634951770 , - 1676314996330 , 692939975 , - 52003 )) / 562949953421312
172
+
173
+ αp = evalpoly ((1 / x)^ 2 , (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13))
174
+ α = x * (evalpoly ((1 / x)^ 2 , (s0, - s1, - s2/ 3 , - s3/ 5 , - s4/ 7 , - s5/ 9 , - s6/ 11 , - s7/ 13 , - s8/ 15 , - s9/ 17 , - s10/ 19 , - s11/ 21 , - s12/ 23 , - s13/ 25 )))
175
+ else
176
+ αp = evalpoly ((1 / x)^ 2 , (s0, s1, s2, s3, s4, s5, s6))
177
+ α = x * (evalpoly ((1 / x)^ 2 , (s0, - s1, - s2/ 3 , - s3/ 5 , - s4/ 7 , - s5/ 9 , - s6/ 11 )))
178
+ end
174
179
α = α - T (pi )/ 4 - T (pi )/ 2 * v
175
-
176
180
b = sqrt (2 / T (pi )) / sqrt (αp * x)
181
+
182
+ return α, b
183
+ end
184
+ function besselj_large_argument (v, x:: T ) where T
185
+ α, b = _α_αp_asymptotic (v, x)
177
186
return cos (α)* b
178
187
end
188
+ function bessely_large_argument (v, x:: T ) where T
189
+ α, b = _α_αp_asymptotic (v, x)
190
+ return sin (α)* b
191
+ end
179
192
193
+
194
+ # only valid in non-oscillatory regime (v>1/2, 0<t<sqrt(v^2 - 0.25))
180
195
function besselj_small_arguments_orders (v, x:: T ) where T
181
- MaxIter = 200
196
+ MaxIter = 1_000
182
197
out = zero (T)
183
198
a = (x/ 2 )^ v / gamma (v + one (T))
184
199
t2 = (x/ 2 )^ 2
185
200
for i in 0 : MaxIter
186
201
out += a
187
- abs (a) < eps (T)* abs (out) && break
188
- a = - a / ( v + i + one (T)) * inv (i + one (T)) * t2
202
+ abs (a) < eps (T) * abs (out) && break
203
+ a = - a * inv (( v + i + one (T)) * (i + one (T) )) * t2
189
204
end
190
205
return out
191
206
end
207
+
208
+ # perhaps use when v is small i believe v also has to be positive for this to work
209
+ # need for bessely
210
+ function log_besselj_small_arguments_orders (v, x:: T ) where T
211
+ MaxIter = 200
212
+ out = zero (T)
213
+ a = one (T)
214
+ x2 = (x/ 2 )^ 2
215
+ for i in 0 : MaxIter
216
+ out += a
217
+ a = - a * x2 * inv ((i + one (T)) * (v + i + one (T)))
218
+ # (abs(a) < eps(T) * abs(out)) && break
219
+ end
220
+ logout = - loggamma (v + 1 ) + v * log (x/ 2 ) + log (out)
221
+ return logout
222
+ end
0 commit comments