@@ -64,7 +64,7 @@ function doublefactorial(n::Integer)
64
64
end
65
65
z = BigInt ()
66
66
ccall ((:__gmpz_2fac_ui , :libgmp ), Void,
67
- (Ptr{Void }, Uint), z . mpz , uint (n))
67
+ (Ptr{BigInt }, Uint), & z , uint (n))
68
68
return z
69
69
end
70
70
@@ -74,7 +74,7 @@ function fibonacci(n::Integer)
74
74
end
75
75
z = BigInt ()
76
76
ccall ((:__gmpz_fib_ui , :libgmp ), Void,
77
- (Ptr{Void }, Uint), z . mpz , uint (n))
77
+ (Ptr{BigInt }, Uint), & z , uint (n))
78
78
return z
79
79
end
80
80
@@ -85,7 +85,7 @@ function jacobisymbol(a::Integer, b::Integer)
85
85
ba = BigInt (a)
86
86
bb = BigInt (b)
87
87
return ccall ((:__gmpz_jacobi , :libgmp ), Int,
88
- (Ptr{Void }, Ptr{Void }), ba . mpz, bb . mpz )
88
+ (Ptr{BigInt }, Ptr{BigInt }), & ba, & bb )
89
89
end
90
90
91
91
# Computes Lassalle's sequence
@@ -102,7 +102,7 @@ function legendresymbol(a::Integer, b::Integer)
102
102
ba = BigInt (a)
103
103
bb = BigInt (b)
104
104
return ccall ((:__gmpz_legendre , :libgmp ), Int,
105
- (Ptr{Void }, Ptr{Void }), ba . mpz, bb . mpz )
105
+ (Ptr{BigInt }, Ptr{BigInt }), & ba, & bb )
106
106
end
107
107
108
108
function lucas (n:: Integer )
@@ -111,7 +111,7 @@ function lucas(n::Integer)
111
111
end
112
112
z = BigInt ()
113
113
ccall ((:__gmpz_lucnum_ui , :libgmp ), Void,
114
- (Ptr{Void }, Uint), z . mpz , uint (n))
114
+ (Ptr{BigInt }, Uint), & z , uint (n))
115
115
return z
116
116
end
117
117
@@ -121,7 +121,7 @@ function multifactorial(n::Integer, m::Integer)
121
121
end
122
122
z = BigInt ()
123
123
ccall ((:__gmpz_mfac_uiui , :libgmp ), Void,
124
- (Ptr{Void }, Uint, Uint), z . mpz , uint (n), uint (m))
124
+ (Ptr{BigInt }, Uint, Uint), & z , uint (n), uint (m))
125
125
return z
126
126
end
127
127
@@ -142,7 +142,7 @@ function primorial(n::Integer)
142
142
end
143
143
z = BigInt ()
144
144
ccall ((:__gmpz_primorial_ui , :libgmp ), Void,
145
- (Ptr{Void }, Uint), z . mpz , uint (n))
145
+ (Ptr{BigInt }, Uint), & z , uint (n))
146
146
return z
147
147
end
148
148
@@ -161,15 +161,15 @@ function integer_partitions(n::Integer)
161
161
elseif n == 1
162
162
return Vector{Int}[[1 ]]
163
163
end
164
-
164
+
165
165
list = Vector{Int}[]
166
-
166
+
167
167
for p in integer_partitions (n- 1 )
168
168
push! (list, [p, 1 ])
169
169
if length (p) == 1 || p[end ] < p[end - 1 ]
170
170
push! (list, [p[1 : end - 1 ], p[end ]+ 1 ])
171
171
end
172
- end
172
+ end
173
173
174
174
list
175
175
end
0 commit comments