Skip to content

bessely_zero fails for abs(nu) < 0.1587 and n = 1 #21

@simonp0420

Description

@simonp0420

This works fine:

julia> bessely_zero(0.1587, 1)
1.1173051438870518

but this fails

julia> bessely_zero(0.1586, 1)
ERROR: DomainError with -0.0002719861885149225:
`x` must be nonnegative.
Stacktrace:
  [1] bessely(nu::Float64, x::Float64)
    @ SpecialFunctions C:\Users\peter\.julia\packages\SpecialFunctions\mf0qH\src\bessel.jl:612
  [2] #5
    @ C:\Users\peter\Documents\julia\packages\FunctionZeros.jl\src\FunctionZeros.jl:63 [inlined]
  [3] Callable_Function
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\functions.jl:29 [inlined]
  [4] init_state
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\DerivativeFree\derivative_free.jl:6 [inlined]
  [5] #init#49
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\hybrid.jl:16 [inlined]
  [6] init (repeats 2 times)
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\hybrid.jl:5 [inlined]
  [7] #init#85
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\DerivativeFree\order0.jl:37 [inlined]
  [8] init
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\DerivativeFree\order0.jl:27 [inlined]
  [9] solve(𝑭𝑿::Roots.ZeroProblem{…}, M::Roots.Order0, p::Nothing; verbose::Bool, kwargs::@Kwargs{…})
    @ Roots C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:497
 [10] solve
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:490 [inlined]
 [11] #find_zero#40
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:220 [inlined]
 [12] find_zero (repeats 2 times)
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:210 [inlined]
 [13] find_zero
    @ C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:243 [inlined]
 [14] bessely_zero(nu::Float64, n::Int64)
    @ FunctionZeros C:\Users\peter\Documents\julia\packages\FunctionZeros.jl\src\FunctionZeros.jl:63
 [15] top-level scope
    @ REPL[55]:1
Some type information was truncated. Use `show(err)` to see complete types.

Similar failure for other positive and negative values of nu when abs(nu) < 0.1587, including nu = 0.

One possible solution:

function bessely_zero(nu, n; order=2)
    if isone(n) && abs(nu) < 0.1587 
        return Roots.find_zero((x) -> SpecialFunctions.bessely(nu, x),
                                           0.5 * (nu + besselj_zero(nu, n)); order)
    else
        return Roots.find_zero((x) -> SpecialFunctions.bessely(nu, x),
                                           bessel_zero_asymptotic(nu, n, 2); order)
    end
end

This produces

julia> using BenchmarkTools

julia> @btime bessely_zero(0.0, 1)
  1.050 μs (0 allocations: 0 bytes)
0.8935769662791675

julia> @btime bessely_zero(0.1586, 1)
  18.100 μs (24 allocations: 384 bytes)
1.117167411163268

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions