-
Notifications
You must be signed in to change notification settings - Fork 4
Closed
Description
This works fine:
julia> bessely_zero(0.1587, 1)
1.1173051438870518but this fails
julia> bessely_zero(0.1586, 1)
ERROR: DomainError with -0.0002719861885149225:
`x` must be nonnegative.
Stacktrace:
[1] bessely(nu::Float64, x::Float64)
@ SpecialFunctions C:\Users\peter\.julia\packages\SpecialFunctions\mf0qH\src\bessel.jl:612
[2] #5
@ C:\Users\peter\Documents\julia\packages\FunctionZeros.jl\src\FunctionZeros.jl:63 [inlined]
[3] Callable_Function
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\functions.jl:29 [inlined]
[4] init_state
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\DerivativeFree\derivative_free.jl:6 [inlined]
[5] #init#49
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\hybrid.jl:16 [inlined]
[6] init (repeats 2 times)
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\hybrid.jl:5 [inlined]
[7] #init#85
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\DerivativeFree\order0.jl:37 [inlined]
[8] init
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\DerivativeFree\order0.jl:27 [inlined]
[9] solve(𝑭𝑿::Roots.ZeroProblem{…}, M::Roots.Order0, p::Nothing; verbose::Bool, kwargs::@Kwargs{…})
@ Roots C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:497
[10] solve
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:490 [inlined]
[11] #find_zero#40
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:220 [inlined]
[12] find_zero (repeats 2 times)
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:210 [inlined]
[13] find_zero
@ C:\Users\peter\.julia\packages\Roots\ohGnS\src\find_zero.jl:243 [inlined]
[14] bessely_zero(nu::Float64, n::Int64)
@ FunctionZeros C:\Users\peter\Documents\julia\packages\FunctionZeros.jl\src\FunctionZeros.jl:63
[15] top-level scope
@ REPL[55]:1
Some type information was truncated. Use `show(err)` to see complete types.Similar failure for other positive and negative values of nu when abs(nu) < 0.1587, including nu = 0.
One possible solution:
function bessely_zero(nu, n; order=2)
if isone(n) && abs(nu) < 0.1587
return Roots.find_zero((x) -> SpecialFunctions.bessely(nu, x),
0.5 * (nu + besselj_zero(nu, n)); order)
else
return Roots.find_zero((x) -> SpecialFunctions.bessely(nu, x),
bessel_zero_asymptotic(nu, n, 2); order)
end
endThis produces
julia> using BenchmarkTools
julia> @btime bessely_zero(0.0, 1)
1.050 μs (0 allocations: 0 bytes)
0.8935769662791675
julia> @btime bessely_zero(0.1586, 1)
18.100 μs (24 allocations: 384 bytes)
1.117167411163268Metadata
Metadata
Assignees
Labels
No labels