@@ -19,16 +19,16 @@ julia> pFq((1, ), (2, ), 0.01) # ≡ expm1(0.01)/0.01
19
19
1.0050167084168058
20
20
21
21
julia> pFq ((1 / 3 , ), (2 / 3 , ), - 1000 ) # ₁F₁
22
- 0.05055805394644902
22
+ 0.050558053946448994
23
23
24
24
julia> pFq ((1 , 2 ), (4 , ), 1 ) # a well-poised ₂F₁
25
25
2.9999999999999996
26
26
27
27
julia> pFq ((1 , 2 + im), (3.5 , ), exp (im* π/ 3 )) # ₂F₁ at that special point in ℂ
28
- 0.6786952632946589 + 0.45235049292850116im
28
+ 0.6786952632946587 + 0.45235049292850116im
29
29
30
30
julia> pFq ((1 , 2 + im), (3.5 , ), exp (im* big (π)/ 3 )) # More digits, you say?
31
- 0.6786952632946589823300834090168381068073515492901393549193461972311801512528478 + 0.4523504929285013648194489713901658143893464679689810112119412310631860619948458im
31
+ 0.6786952632946589823300834090168381068073515492901393549193461972311801512528996 + 0.4523504929285013648194489713901658143893464679689810112119412310631860619947939im
32
32
33
33
julia> pFq ((1 , 2 + im, 2.5 ), (3.5 , 4 ), exp (im* π/ 3 )) # ₃F₂ because why not
34
34
0.8434434031615688 + 0.3417550761546319im
@@ -37,9 +37,9 @@ julia> pFq((1, 2+im, 2.5), (3.5, 4), exp(im*big(π)/3)) # Also in extended preci
37
37
0.8434434031615690763389963048175253868863156451003855955719081209861492349266966 + 0.34175507615463197326144956567125097230303506665711024742993111225869481084123im
38
38
39
39
julia> pFq ((1 , 1 ), (), - 1 ) # A divergent series
40
- 0.5963473623231935
40
+ 0.5963473623231942
41
41
42
42
julia> pFq ((1 , 1 ), (), - big (1 ))
43
- 0.5963473623231940743410784993692793760741778601525487815734849104823272191158165
43
+ 0.5963473623231940743410784993692793760741778601525487815734849104823272191142015
44
44
45
45
```
0 commit comments