2
2
# using Drummond's sequence transformation
3
3
4
4
# ₀F₀(;z)
5
- function pFqdrummond (:: Tuple{} , :: Tuple{} , z:: T ; kmax:: Int = 10_000 ) where T
5
+ function pFqdrummond (:: Tuple{} , :: Tuple{} , z:: T ; kmax:: Int = KMAX ) where T
6
6
if norm (z) < eps (real (T))
7
7
return one (T)
8
8
end
@@ -28,7 +28,7 @@ function pFqdrummond(::Tuple{}, ::Tuple{}, z::T; kmax::Int = 10_000) where T
28
28
end
29
29
30
30
# ₁F₀(α;z)
31
- function pFqdrummond (α:: Tuple{T1} , :: Tuple{} , z:: T2 ; kmax:: Int = 10_000 ) where {T1, T2}
31
+ function pFqdrummond (α:: Tuple{T1} , :: Tuple{} , z:: T2 ; kmax:: Int = KMAX ) where {T1, T2}
32
32
α = α[1 ]
33
33
T = promote_type (T1, T2)
34
34
absα = abs (T (α))
@@ -72,7 +72,7 @@ function pFqdrummond(α::Tuple{T1}, ::Tuple{}, z::T2; kmax::Int = 10_000) where
72
72
end
73
73
74
74
# ₀F₁(β;z)
75
- function pFqdrummond (:: Tuple{} , β:: Tuple{T1} , z:: T2 ; kmax:: Int = 10_000 ) where {T1, T2}
75
+ function pFqdrummond (:: Tuple{} , β:: Tuple{T1} , z:: T2 ; kmax:: Int = KMAX ) where {T1, T2}
76
76
β = β[1 ]
77
77
T = promote_type (T1, T2)
78
78
if norm (z) < eps (real (T))
@@ -103,7 +103,7 @@ function pFqdrummond(::Tuple{}, β::Tuple{T1}, z::T2; kmax::Int = 10_000) where
103
103
end
104
104
105
105
# ₂F₀(α,β;z)
106
- function pFqdrummond (α:: Tuple{T1, T1} , :: Tuple{} , z:: T2 ; kmax:: Int = 10_000 ) where {T1, T2}
106
+ function pFqdrummond (α:: Tuple{T1, T1} , :: Tuple{} , z:: T2 ; kmax:: Int = KMAX ) where {T1, T2}
107
107
(α, β) = α
108
108
T = promote_type (T1, T2)
109
109
absα = abs (T (α))
@@ -147,7 +147,7 @@ function pFqdrummond(α::Tuple{T1, T1}, ::Tuple{}, z::T2; kmax::Int = 10_000) wh
147
147
end
148
148
149
149
# ₁F₁(α,β;z)
150
- function pFqdrummond (α:: Tuple{T1} , β:: Tuple{T2} , z:: T3 ; kmax:: Int = 10_000 ) where {T1, T2, T3}
150
+ function pFqdrummond (α:: Tuple{T1} , β:: Tuple{T2} , z:: T3 ; kmax:: Int = KMAX ) where {T1, T2, T3}
151
151
α = α[1 ]
152
152
β = β[1 ]
153
153
T = promote_type (T1, T2, T3)
@@ -200,7 +200,7 @@ function pFqdrummond(α::Tuple{T1}, β::Tuple{T2}, z::T3; kmax::Int = 10_000) wh
200
200
end
201
201
202
202
# ₀F₂(α,β;z)
203
- function pFqdrummond (:: Tuple{} , β:: Tuple{T1, T1} , z:: T2 ; kmax:: Int = 10_000 ) where {T1, T2}
203
+ function pFqdrummond (:: Tuple{} , β:: Tuple{T1, T1} , z:: T2 ; kmax:: Int = KMAX ) where {T1, T2}
204
204
(α, β) = β
205
205
T = promote_type (T1, T2)
206
206
if norm (z) < eps (real (T)) || norm (α) < eps (real (T)) || norm (β) < eps (real (T))
@@ -237,7 +237,7 @@ function pFqdrummond(::Tuple{}, β::Tuple{T1, T1}, z::T2; kmax::Int = 10_000) wh
237
237
end
238
238
239
239
# ₂F₁(α,β,γ;z)
240
- function pFqdrummond (α:: Tuple{T1, T1} , β:: Tuple{T2} , z:: T3 ; kmax:: Int = 10_000 ) where {T1, T2, T3}
240
+ function pFqdrummond (α:: Tuple{T1, T1} , β:: Tuple{T2} , z:: T3 ; kmax:: Int = KMAX ) where {T1, T2, T3}
241
241
γ = β[1 ]
242
242
(α, β) = α
243
243
T = promote_type (T1, T2, T3)
@@ -299,7 +299,7 @@ function pFqdrummond(α::NTuple{p, Any}, β::NTuple{q, Any}, z; kwds...) where {
299
299
T2 = isempty (β) ? Any : mapreduce (typeof, promote_type, β)
300
300
pFqdrummond (T1 .(α), T2 .(β), z; kwds... )
301
301
end
302
- function pFqdrummond (α:: NTuple{p, T1} , β:: NTuple{q, T2} , z:: T3 ; kmax:: Int = 10_000 ) where {p, q, T1, T2, T3}
302
+ function pFqdrummond (α:: NTuple{p, T1} , β:: NTuple{q, T2} , z:: T3 ; kmax:: Int = KMAX ) where {p, q, T1, T2, T3}
303
303
T = promote_type (eltype (α), eltype (β), T3)
304
304
absα = abs .(T .(α))
305
305
if norm (z) < eps (real (T)) || norm (prod (α)) < eps (prod (absα))
0 commit comments