Skip to content

Commit 1664149

Browse files
committed
Some polishing of README.
1 parent 7e52c57 commit 1664149

File tree

1 file changed

+15
-17
lines changed

1 file changed

+15
-17
lines changed

README.md

Lines changed: 15 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Polynomials.jl
22

3-
Basic arithmetic, integration, differentiation, evaluation, and root finding over dense univariate polynomials.
3+
Basic arithmetic, integration, differentiation, evaluation, and root finding over dense univariate [polynomials](https://en.wikipedia.org/wiki/Polynomial).
44

55
[![](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaMath.github.io/Polynomials.jl/stable)
66
[![Build Status](https://travis-ci.org/JuliaMath/Polynomials.jl.svg?branch=master)](https://travis-ci.org/JuliaMath/Polynomials.jl)
@@ -10,22 +10,20 @@ Basic arithmetic, integration, differentiation, evaluation, and root finding ove
1010
## Installation
1111

1212
```julia
13-
(v1.4) pkg> add Polynomials
14-
15-
julia> using Polynomials
13+
(v1.5) pkg> add Polynomials
1614
```
1715

18-
## Usage
16+
## Available Types of Polynomials
1917

20-
#### Available Polynomials
18+
* `Polynomial` –⁠ Standard basis polynomials, `a(x) = a₀ + a₁ x + a₂ x² + … + aₙ xⁿ`, `n ∈ ℕ`
19+
* `ImmutablePolynomial` –⁠ Standard basis polynomials backed by a [Tuple type](https://docs.julialang.org/en/v1/manual/functions/#Tuples-1) for faster evaluation of values
20+
* `SparsePolynomial` –⁠ Standard basis polynomial backed by a [dictionary](https://docs.julialang.org/en/v1/base/collections/#Dictionaries-1) to hold sparse high-degree polynomials
21+
* `LaurentPolynomial` –⁠ [Laurent polynomials](https://docs.julialang.org/en/v1/base/collections/#Dictionaries-1), `a(x) = aₘ xᵐ + … + aₙ xⁿ` `m ≤ n`, `m,n ∈ ℤ` backed by an [offset array](). For example, if `m<0` and `n>0`, `a(x) = aₘ xᵐ + … + a₋₁ x⁻¹ + a₀ + a₁ x + … + aₙ xⁿ`
22+
* `ChebyshevT` –⁠ [Chebyshev polynomials](https://en.wikipedia.org/wiki/Chebyshev_polynomials) of the first kind
2123

22-
* `Polynomial` - Standard basis polynomials, `a_0 + a_1⋅x + a_2⋅x^2 + ⋯ + a_n⋅xⁿ`, `n ∈ ℕ`
23-
* `ImmutablePolynomial` - Standard basis polynomials backed by a tuple for faster evaluation of values
24-
* `SparsePolynomial` - Standard basis polynomial backed by a dictionary to hold sparse high-degree polynomials
25-
* `LaurentPolynomial` - Laurent polynomials, `a_m⋅x^m + ⋯ a_n⋅x^n` `m ≤ n`, `m,n ∈ ℤ` backed by an offset array
26-
* `ChebyshevT` - Chebyshev polynomials of the first kind
24+
## Usage
2725

28-
#### Construction and Evaluation
26+
### Construction and Evaluation
2927

3028
Construct a polynomial from its coefficients, lowest order first.
3129

@@ -56,7 +54,7 @@ julia> p(0.1)
5654
0.99
5755
```
5856

59-
#### Arithmetic
57+
### Arithmetic
6058

6159
The usual arithmetic operators are overloaded to work on polynomials, and combinations of polynomials and scalars.
6260

@@ -95,7 +93,7 @@ julia> p + q
9593
ERROR: Polynomials must have same variable.
9694
```
9795

98-
#### Integrals and Derivatives
96+
### Integrals and Derivatives
9997

10098
Integrate the polynomial `p` term by term, optionally adding constant
10199
term `k`. The degree of the resulting polynomial is one higher than the
@@ -117,7 +115,7 @@ julia> derivative(Polynomial([1, 3, -1]))
117115
Polynomial(3 - 2x)
118116
```
119117

120-
#### Root-finding
118+
### Root-finding
121119

122120

123121
Return the roots (zeros) of `p`, with multiplicity. The number of
@@ -141,7 +139,7 @@ julia> roots(Polynomial([0, 0, 1]))
141139
0.0
142140
```
143141

144-
#### Fitting arbitrary data
142+
### Fitting arbitrary data
145143

146144
Fit a polynomial (of degree `deg` or less) to `x` and `y` using a least-squares approximation.
147145

@@ -159,7 +157,7 @@ Visual example:
159157

160158
![fit example](https://user-images.githubusercontent.com/14099459/70382587-9e055500-1902-11ea-8952-3f03ae08b7dc.png)
161159

162-
#### Other methods
160+
### Other methods
163161

164162
Polynomial objects also have other methods:
165163

0 commit comments

Comments
 (0)