@@ -278,6 +278,122 @@ function showterm(io::IO, ::Type{<:LaurentPolynomial}, pj::T, var, j, first::Boo
278
278
end
279
279
280
280
281
+ # #
282
+ # # ---- Conjugation has different defintions
283
+ # #
284
+
285
+ """
286
+ conj(p)
287
+
288
+ This satisfies `conj(p(x)) = conj(p)(conj(x)) = p̄(conj(x))` or `p̄(x) = (conj ∘ p ∘ conj)(x)`
289
+
290
+ Examples
291
+ ```jldoctest
292
+ julia> z = variable(LaurentPolynomial, :z)
293
+ LaurentPolynomial(z)
294
+
295
+ julia> p = LaurentPolynomial([im, 1+im, 2 + im], -1:1, :z)
296
+ LaurentPolynomial(im*z⁻¹ + (1 + 1im) + (2 + 1im)*z)
297
+
298
+ julia> conj(p)(conj(z)) ≈ conj(p(z))
299
+ true
300
+
301
+ julia> conj(p)(z) ≈ (conj ∘ p ∘ conj)(z)
302
+ true
303
+ ```
304
+ """
305
+ function LinearAlgebra. conj (p:: P ) where {P <: LaurentPolynomial }
306
+ ps = coeffs (p)
307
+ m,n = extrema (p)
308
+ ⟒ (P)(conj (ps),m: n, p. var)
309
+ end
310
+
311
+
312
+ """
313
+ paraconj(p)
314
+
315
+ [cf.](https://ccrma.stanford.edu/~jos/filters/Paraunitary_FiltersC_3.html)
316
+
317
+ Call `p̂ = paraconj(p)` and `p̄` = conj(p)`, then this satisfies
318
+ `conj(p(z)) = p̂(1/conj(z))` or `p̂(z) = p̄(1/z) = (conj ∘ p ∘ conj ∘ inf)(z)`.
319
+
320
+ Examples:
321
+
322
+ ```jldoctest
323
+ julia> z = variable(LaurentPolynomial, :z)
324
+ LaurentPolynomial(z)
325
+
326
+ julia> h = LaurentPolynomial([1,1], -1:0, :z)
327
+ LaurentPolynomial(z⁻¹ + 1)
328
+
329
+ julia> Polynomials.paraconj(h)(z) ≈ 1 + z ≈ LaurentPolynomial([1,1], 0:1, :z)
330
+ true
331
+
332
+ julia> h = LaurentPolynomial([3,2im,1], -2:0, :z)
333
+ LaurentPolynomial(3*z⁻² + 2im*z⁻¹ + 1)
334
+
335
+ julia> Polynomials.paraconj(h)(z) ≈ 1 - 2im*z + 3z^2 ≈ LaurentPolynomial([1, -2im, 3], 0:2, :z)
336
+ true
337
+
338
+ julia> Polynomials.paraconj(h)(z) ≈ (conj ∘ h ∘ conj ∘ inv)(z)
339
+ true
340
+ """
341
+ function paraconj (p:: LaurentPolynomial )
342
+ cs = p. coeffs
343
+ ds = adjoint .(cs)
344
+ m,n = extrema (p)
345
+ LaurentPolynomial (reverse (ds), - n: - m, p. var)
346
+ end
347
+
348
+ """
349
+ cconj(p)
350
+
351
+ Conjugation of a polynomial with respect to the imaginary axis.
352
+
353
+ The `cconj` of a polynomial, `p̃`, conjugates the coefficients and applies `s -> -s`. That is `cconj(p)(s) = conj(p)(-s)`.
354
+
355
+ This satisfies for *imaginary* `s`: `conj(p(s)) = p̃(s) = (conj ∘ p)(s) = cconj(p)(s) `
356
+
357
+ [ref](https://github.com/hurak/PolynomialEquations.jl#symmetrix-conjugate-equation-continuous-time-case)
358
+
359
+ Examples:
360
+ ```jldoctest
361
+ julia> s = 2im
362
+ 0 + 2im
363
+
364
+ julia> p = LaurentPolynomial([im,-1, -im, 1], 1:2, :s)
365
+ LaurentPolynomial(im*s - s² - im*s³ + s⁴)
366
+
367
+ julia> Polynomials.cconj(p)(s) ≈ conj(p(s))
368
+ true
369
+
370
+ julia> a = LaurentPolynomial([-0.12, -0.29, 1],:s)
371
+ LaurentPolynomial(-0.12 - 0.29*s + 1.0*s²)
372
+
373
+ julia> b = LaurentPolynomial([1.86, -0.34, -1.14, -0.21, 1.19, -1.12],:s)
374
+ LaurentPolynomial(1.86 - 0.34*s - 1.14*s² - 0.21*s³ + 1.19*s⁴ - 1.12*s⁵)
375
+
376
+ julia> x = LaurentPolynomial([-15.5, 50.0096551724139, 1.19], :s)
377
+ LaurentPolynomial(-15.5 + 50.0096551724139*s + 1.19*s²)
378
+
379
+ julia> Polynomials.cconj(a) * x + a * Polynomials.cconj(x) ≈ b + Polynomials.cconj(b)
380
+ true
381
+ ```
382
+
383
+ """
384
+ function cconj (p:: LaurentPolynomial )
385
+ ps = conj .(coeffs (p))
386
+ m,n = extrema (p)
387
+ for i in m: n
388
+ if isodd (i)
389
+ ps[i+ 1 - m] *= - 1
390
+ end
391
+ end
392
+ LaurentPolynomial (ps, m: n, p. var)
393
+ end
394
+
395
+
396
+
281
397
# #
282
398
# # ----
283
399
# #
@@ -290,10 +406,13 @@ function (p::LaurentPolynomial{T})(x::S) where {T,S}
290
406
if m >= 0
291
407
evalpoly (x, NTuple {n+1,T} (p[i] for i in 0 : n))
292
408
elseif n <= 0
293
- evalpoly (inv (x), NTuple {m+1,T} (p[i] for i in 0 : - 1 : m))
409
+ evalpoly (inv (x), NTuple {- m+1,T} (p[i] for i in 0 : - 1 : m))
294
410
else
295
411
# eval pl(x) = a_mx^m + ...+ a_0 at 1/x; pr(x) = a_0 + a_1x + ... + a_nx^n at x; subtract a_0
296
- evalpoly (inv (x), NTuple {-m+1,T} (p[i] for i in 0 : - 1 : m)) + evalpoly (x, NTuple {n+1,T} (p[i] for i in 0 : n)) - p[0 ]
412
+ l = evalpoly (inv (x), NTuple {-m+1,T} (p[i] for i in 0 : - 1 : m))
413
+ r = evalpoly (x, NTuple {n+1,T} (p[i] for i in 0 : n))
414
+ mid = p[0 ]
415
+ l + r - mid
297
416
end
298
417
end
299
418
0 commit comments