@@ -10,10 +10,10 @@ In the case `degree(p) ≫ degree(q)`, a heuristic is employed to first call on
10
10
function ngcd (p:: P , q:: Q , args... ;kwargs... ) where {T, S, P<: StandardBasisPolynomial{T} , Q <: StandardBasisPolynomial{S} }
11
11
12
12
degree (p) < 0 && return (u= q, v= p, w= one (q), θ= NaN , κ= NaN )
13
- degree (p) == 0 && return (u= one (q), v= p, w= zero (q), θ= NaN , κ= NaN )
13
+ degree (p) == 0 && return (u= one (q), v= p, w= q, θ= NaN , κ= NaN )
14
14
degree (q) < 0 && return (u= one (q), v= p, w= zero (q), θ= NaN , κ= NaN )
15
15
degree (q) == 0 && return (u= one (p), v= p, w= q, θ= NaN , κ= NaN )
16
- assert_same_variable (p,q)
16
+ assert_same_variable (p,q)
17
17
18
18
p′,q′ = promote (p,q)
19
19
264
264
# return guess at smallest singular value and right sinuglar value, x
265
265
# for an upper triangular matrix, V
266
266
function smallest_singular_value (V:: AbstractArray{T,2} ,
267
- atol= eps (T ),
268
- rtol= zero (T )) where {T}
267
+ atol= eps (real (T) ),
268
+ rtol= zero (real (T) )) where {T}
269
269
270
270
R = UpperTriangular (V)
271
271
k = size (R)[1 ]/ 2
0 commit comments