@@ -68,7 +68,7 @@ function =={T}(P::FormalPowerSeries{T}, Q::FormalPowerSeries{T})
68
68
for (k,v) in P. c
69
69
if v== 0 # ignore explicit zeros
70
70
continue
71
- elseif ! has (Q. c, k)
71
+ elseif ! haskey (Q. c, k)
72
72
return false
73
73
elseif Q. c[k] != v
74
74
return false
@@ -77,7 +77,7 @@ function =={T}(P::FormalPowerSeries{T}, Q::FormalPowerSeries{T})
77
77
for (k,v) in Q. c
78
78
if v== 0 # ignore explicit zeros
79
79
continue
80
- elseif ! has (P. c, k)
80
+ elseif ! haskey (P. c, k)
81
81
return false
82
82
elseif P. c[k] != v
83
83
return false
90
90
function + {T}(P:: FormalPowerSeries{T} , Q:: FormalPowerSeries{T} )
91
91
c = Dict {BigInt, T} ()
92
92
for (k,v) in P. c
93
- has (c,k) ? (c[k]+= v) : (c[k]= v)
93
+ haskey (c,k) ? (c[k]+= v) : (c[k]= v)
94
94
end
95
95
for (k,v) in Q. c
96
- has (c,k) ? (c[k]+= v) : (c[k]= v)
96
+ haskey (c,k) ? (c[k]+= v) : (c[k]= v)
97
97
end
98
98
FormalPowerSeries {T} (c)
99
99
end
100
100
101
101
function - {T}(P:: FormalPowerSeries{T} , Q:: FormalPowerSeries{T} )
102
102
c = Dict {BigInt, T} ()
103
103
for (k,v) in P. c
104
- has (c,k) ? (c[k]+= v) : (c[k]= v)
104
+ haskey (c,k) ? (c[k]+= v) : (c[k]= v)
105
105
end
106
106
for (k,v) in Q. c
107
- has (c,k) ? (c[k]-= v) : (c[k]= - v)
107
+ haskey (c,k) ? (c[k]-= v) : (c[k]= - v)
108
108
end
109
109
FormalPowerSeries {T} (c)
110
110
end
@@ -134,7 +134,7 @@ function CauchyProduct{T}(P::FormalPowerSeries{T}, Q::FormalPowerSeries{T})
134
134
c = Dict {BigInt, T} ()
135
135
for (k1, v1) in P. c
136
136
for (k2, v2) in Q. c
137
- has (c, k1+ k2) ? (c[k1+ k2]+= v1* v2) : (c[k1+ k2]= v1* v2)
137
+ haskey (c, k1+ k2) ? (c[k1+ k2]+= v1* v2) : (c[k1+ k2]= v1* v2)
138
138
end
139
139
end
140
140
FormalPowerSeries {T} (c)
145
145
function HadamardProduct {T} (P:: FormalPowerSeries{T} , Q:: FormalPowerSeries{T} )
146
146
c = Dict {BigInt, T} ()
147
147
for (k,v) in P. c
148
- if v!= 0 && has (Q. c,k) && Q. c[k]== 0
148
+ if v!= 0 && haskey (Q. c,k) && Q. c[k]== 0
149
149
c[k] = v * Q. c[k]
150
150
end
151
151
end
162
162
isunit {T <: Number} (P:: FormalPowerSeries{T} ) = P== eye (P)
163
163
164
164
# [H, p.12]
165
- isnonunit {T} (P:: FormalPowerSeries{T} ) = (! has (P. c, 0 ) || P. c[0 ]== 0 ) && ! isunit (P)
165
+ isnonunit {T} (P:: FormalPowerSeries{T} ) = (! haskey (P. c, 0 ) || P. c[0 ]== 0 ) && ! isunit (P)
166
166
167
167
# Constructs the top left m x m block of the (infinite) semicirculant matrix
168
168
# associated with the fps [H, Sec.1.3, p.14]
260
260
261
261
# [H, p.45]
262
262
function isalmostunit {T} (P:: FormalPowerSeries{T} )
263
- (has (P. c, 0 ) && P. c[0 ]!= 0 ) ? (return false ) : true
264
- (has (P. c, 1 ) && P. c[1 ]!= 0 ) ? (return true ) : (return false )
263
+ (haskey (P. c, 0 ) && P. c[0 ]!= 0 ) ? (return false ) : true
264
+ (haskey (P. c, 1 ) && P. c[1 ]!= 0 ) ? (return true ) : (return false )
265
265
end
266
266
267
267
0 commit comments