@@ -71,13 +71,13 @@ function rand(d::Wigner{4}, n::Int)
71
71
end
72
72
73
73
rand (d:: Wigner{β} , n:: Int ) where {β} =
74
- throw (ValueError (" Cannot sample random matrix of size $n x $n for β=$β " ))
74
+ throw (ArgumentError (" Cannot sample random matrix of size $n x $n for β=$β " ))
75
75
76
- function rand (d:: Wigner{β} , dims... ) where {β}
76
+ function rand (d:: Wigner{β} , dims:: Int ... ) where {β}
77
77
if length (dims)== 2 && dims[1 ] == dims[2 ]
78
78
return rand (d, dims[1 ])
79
79
else
80
- throw (ValueError (" Cannot sample random matrix of size $dims for β=$β " ))
80
+ throw (ArgumentError (" Cannot sample random matrix of size $dims for β=$β " ))
81
81
end
82
82
end
83
83
@@ -92,7 +92,7 @@ The β=∞ case is defined in Edelman, Persson and Sutton, 2012
92
92
function tridrand (d:: Wigner{β} , n:: Int ) where {β}
93
93
χ (df:: Real ) = rand (Distributions. Chi (df))
94
94
if β≤ 0
95
- throw (ValueError (" β = $β cannot be nonpositive" ))
95
+ throw (ArgumentError (" β = $β cannot be nonpositive" ))
96
96
elseif isinf (β)
97
97
return tridrand (Wigner{Inf }, n)
98
98
else
@@ -107,7 +107,7 @@ function tridrand(d::Wigner{β}, dims...) where {β}
107
107
if length (dims)== 2 && dims[1 ] == dims[2 ]
108
108
return rand (d, dims[1 ])
109
109
else
110
- throw (ValueError (" Cannot sample random matrix of size $dims for β=$β " ))
110
+ throw (ArgumentError (" Cannot sample random matrix of size $dims for β=$β " ))
111
111
end
112
112
end
113
113
0 commit comments