Skip to content

Commit 186b6c7

Browse files
PaulXiCaosimonbyrne
authored andcommitted
updated deprecated makedocs call: format; clean build dir; aligned code (#167)
* updated deprecated makedocs call: format; clean build dir; aligned code * new documentation layout
1 parent 9dd63bf commit 186b6c7

File tree

12 files changed

+854
-416
lines changed

12 files changed

+854
-416
lines changed

docs/make.jl

Lines changed: 9 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,18 +1,17 @@
11
using SpecialFunctions, Documenter
22

33
makedocs(
4-
modules = [SpecialFunctions],
5-
clean = false,
6-
format = :html,
7-
sitename = "SpecialFunctions.jl",
8-
authors = "Jeff Bezanson, Stefan Karpinski, Viral B. Shah, et al.",
9-
pages = [
10-
"Home" => "index.md",
11-
"Functions" => "special.md",
4+
modules = [SpecialFunctions],
5+
sitename = "SpecialFunctions.jl",
6+
authors = "Jeff Bezanson, Stefan Karpinski, Viral B. Shah, et al.",
7+
pages = [
8+
"Home" => "index.md",
9+
"Overview" => "functions_overview.md",
10+
"List" => "functions_list.md",
1211
],
1312
)
1413

1514
deploydocs(
16-
repo = "github.com/JuliaMath/SpecialFunctions.jl.git",
17-
target = "build",
15+
repo = "github.com/JuliaMath/SpecialFunctions.jl.git",
16+
target = "build",
1817
)
File renamed without changes.

docs/src/functions_overview.md

Lines changed: 80 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,80 @@
1+
# Functions
2+
Here the *Special Functions* are listed according to the structure of [NIST Digital Library of Mathematical Functions](https://dlmf.nist.gov/).
3+
4+
## Error Functions, Dawson’s and Fresnel Integrals
5+
6+
| Function | Description |
7+
|:-------- |:----------- |
8+
| [`erf(x)`](@ref SpecialFunctions.erf) | [error function](https://en.wikipedia.org/wiki/Error_function) at ``x`` |
9+
| [`erfc(x)`](@ref SpecialFunctions.erfc) | complementary error function, i.e. the accurate version of ``1-\operatorname{erf}(x)`` for large ``x`` |
10+
| [`erfcinv(x)`](@ref SpecialFunctions.erfcinv) | inverse function to [`erfc()`](@ref SpecialFunctions.erfc) |
11+
| [`erfcx(x)`](@ref SpecialFunctions.erfcx) | scaled complementary error function, i.e. accurate ``e^{x^2} \operatorname{erfc}(x)`` for large ``x`` |
12+
| [`erfi(x)`](@ref SpecialFunctions.erfi) | imaginary error function defined as ``-i \operatorname{erf}(ix)`` |
13+
| [`erfinv(x)`](@ref SpecialFunctions.erfinv) | inverse function to [`erf()`](@ref SpecialFunctions.erf) |
14+
| [`dawson(x)`](@ref SpecialFunctions.dawson) | scaled imaginary error function, a.k.a. Dawson function, i.e. accurate ``\frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x)`` for large ``x`` |
15+
16+
17+
## Elliptic Integrals
18+
19+
| Function | Description |
20+
|:-------- |:----------- |
21+
| [`ellipk(m)`](@ref SpecialFunctions.ellipk) | [complete elliptic integral of 1st kind](https://en.wikipedia.org/wiki/Elliptic_integral#Notational_variants) ``K(m)`` |
22+
| [`ellipe(m)`](@ref SpecialFunctions.ellipe) | [complete elliptic integral of 2nd kind](https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_second_kind) ``E(m)`` |
23+
24+
## Trigonometric Integrals
25+
| Function | Description |
26+
|:-------- |:----------- |
27+
| [`sinint(x)`](@ref SpecialFunctions.sinint) | [sine integral](https://en.wikipedia.org/wiki/Trigonometric_integral#Sine_integral) ``Si(x)`` |
28+
| [`cosint(x)`](@ref SpecialFunctions.cosint) | [cosine integral](https://en.wikipedia.org/wiki/Trigonometric_integral#Cosine_integral) ``Ci(x)`` |
29+
30+
## Airy, Bessel and Hankel Functions
31+
| Function | Description |
32+
|:-------- |:----------- |
33+
| [`airyai(z)`](@ref SpecialFunctions.airyai) | [Airy Ai function](https://en.wikipedia.org/wiki/Airy_function) at `z` |
34+
| [`airyaiprime(z)`](@ref SpecialFunctions.airyaiprime) | derivative of the Airy Ai function at `z` |
35+
| [`airybi(z)`](@ref SpecialFunctions.airybi) | [Airy Bi function](https://en.wikipedia.org/wiki/Airy_function) at `z` |
36+
| [`airybiprime(z)`](@ref SpecialFunctions.airybiprime) | derivative of the Airy Bi function at `z` |
37+
| [`airyaix(z)`](@ref SpecialFunctions.airyaix), [`airyaiprimex(z)`](@ref SpecialFunctions.airyaiprimex), [`airybix(z)`](@ref SpecialFunctions.airybix), [`airybiprimex(z)`](@ref SpecialFunctions.airybiprimex) | scaled Airy Ai function and `k`th derivatives at `z` |
38+
| [`besselj(nu,z)`](@ref SpecialFunctions.besselj) | [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind of order `nu` at `z` |
39+
| [`besselj0(z)`](@ref SpecialFunctions.besselj0) | `besselj(0,z)` |
40+
| [`besselj1(z)`](@ref SpecialFunctions.besselj1) | `besselj(1,z)` |
41+
| [`besseljx(nu,z)`](@ref SpecialFunctions.besseljx) | scaled Bessel function of the first kind of order `nu` at `z` |
42+
| [`bessely(nu,z)`](@ref SpecialFunctions.bessely) | [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind of order `nu` at `z` |
43+
| [`bessely0(z)`](@ref SpecialFunctions.bessely0) | `bessely(0,z)` |
44+
| [`bessely1(z)`](@ref SpecialFunctions.bessely1) | `bessely(1,z)` |
45+
| [`besselyx(nu,z)`](@ref SpecialFunctions.besselyx) | scaled Bessel function of the second kind of order `nu` at `z` |
46+
| [`besselh(nu,k,z)`](@ref SpecialFunctions.besselh) | [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the third kind (a.k.a. Hankel function) of order `nu` at `z`; `k` must be either `1` or `2` |
47+
| [`hankelh1(nu,z)`](@ref SpecialFunctions.hankelh1) | `besselh(nu, 1, z)` |
48+
| [`hankelh1x(nu,z)`](@ref SpecialFunctions.hankelh1x) | scaled `besselh(nu, 1, z)` |
49+
| [`hankelh2(nu,z)`](@ref SpecialFunctions.hankelh2) | `besselh(nu, 2, z)` |
50+
| [`hankelh2x(nu,z)`](@ref SpecialFunctions.hankelh2x) | scaled `besselh(nu, 2, z)` |
51+
| [`besseli(nu,z)`](@ref SpecialFunctions.besseli) | modified [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind of order `nu` at `z` |
52+
| [`besselix(nu,z)`](@ref SpecialFunctions.besselix) | scaled modified Bessel function of the first kind of order `nu` at `z` |
53+
| [`besselk(nu,z)`](@ref SpecialFunctions.besselk) | modified [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind of order `nu` at `z` |
54+
| [`besselkx(nu,z)`](@ref SpecialFunctions.besselkx) | scaled modified Bessel function of the second kind of order `nu` at `z` |
55+
56+
## Gamma and related functions
57+
| Function | Description |
58+
|:-------- |:----------- |
59+
| [`gamma(z)`](@ref SpecialFunctions.gamma) | [gamma function](https://en.wikipedia.org/wiki/Gamma_function) ``\Gamma(z)`` |
60+
| [`digamma(x)`](@ref SpecialFunctions.digamma) | [digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `lgamma` at `x`) |
61+
| [`invdigamma(x)`](@ref SpecialFunctions.invdigamma) | [invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
62+
| [`trigamma(x)`](@ref SpecialFunctions.trigamma) | [trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
63+
| [`polygamma(m,x)`](@ref SpecialFunctions.polygamma) | [polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `lgamma` function at `x`) |
64+
| [`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) | [incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q)) |
65+
| [`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) | [incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
66+
| [`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) | [inverse of incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given P(a,x)=p and Q(a,x)=q |
67+
| [`loggamma(x)`](@ref SpecialFunctions.loggamma) | accurate `log(gamma(x))` for large `x` |
68+
| [`logabsgamma(x)`](@ref SpecialFunctions.logabsgamma) | accurate `log(abs(gamma(x)))` for large `x` |
69+
| [`lgamma(x)`](@ref SpecialFunctions.lgamma) | accurate `log(gamma(x))` for large `x` |
70+
| [`logfactorial(x)`](@ref SpecialFunctions.logfactorial) | accurate `log(factorial(x))` for large `x`; same as `lgamma(x+1)` for `x > 1`, zero otherwise |
71+
| [`beta(x,y)`](@ref SpecialFunctions.beta) | [beta function](https://en.wikipedia.org/wiki/Beta_function) at `x,y` |
72+
| [`logbeta(x,y)`](@ref SpecialFunctions.logbeta) | accurate `log(beta(x,y))` for large `x` or `y` |
73+
| [`logabsbeta(x,y)`](@ref SpecialFunctions.logabsbeta) | accurate `log(abs(beta(x,y)))` for large `x` or `y` |
74+
| [`logabsbinomial(x,y)`](@ref SpecialFunctions.logabsbinomial) | accurate `log(abs(beta(x,y)))` for large `x` or `y` |
75+
76+
## Riemann Zeta and related functions
77+
| Function | Description |
78+
|:-------- |:----------- |
79+
| [`eta(x)`](@ref SpecialFunctions.eta) | [Dirichlet eta function](https://en.wikipedia.org/wiki/Dirichlet_eta_function) at `x` |
80+
| [`zeta(x)`](@ref SpecialFunctions.zeta) | [Riemann zeta function](https://en.wikipedia.org/wiki/Riemann_zeta_function) at `x` |

0 commit comments

Comments
 (0)