You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[`erf(x)`](@ref)|[error function](https://en.wikipedia.org/wiki/Error_function) at `x`|
10
-
|[`erfc(x)`](@ref)| complementary error function, i.e. the accurate version of `1-erf(x)` for large `x`|
11
-
|[`erfinv(x)`](@ref)| inverse function to [`erf()`](@ref)|
12
-
|`erfcinv(x)`| inverse function to [`erfc()`](@ref)|
13
-
|[`erfi(x)`](@ref)| imaginary error function defined as `-im * erf(x * im)`, where [`im`](@ref) is the imaginary unit |
14
-
|[`erfcx(x)`](@ref)| scaled complementary error function, i.e. accurate `exp(x^2) * erfc(x)` for large `x`|
15
-
|[`dawson(x)`](@ref)| scaled imaginary error function, a.k.a. Dawson function, i.e. accurate `exp(-x^2) * erfi(x) * sqrt(pi) / 2` for large `x`|
16
-
|[`digamma(x)`](@ref)|[digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of [`lgamma()`](@ref)) at `x`|
17
-
|[`eta(x)`](@ref)|[Dirichlet eta function](https://en.wikipedia.org/wiki/Dirichlet_eta_function) at `x`|
18
-
|[`zeta(x)`](@ref)|[Riemann zeta function](https://en.wikipedia.org/wiki/Riemann_zeta_function) at `x`|
19
-
|[`airyai(z)`](@ref)|[Airy Ai function](https://en.wikipedia.org/wiki/Airy_function) at `z`|
20
-
|[`airyaiprime(z)`](@ref)| derivative of the Airy Ai function at `z`|
21
-
|[`airybi(z)`](@ref)|[Airy Bi function](https://en.wikipedia.org/wiki/Airy_function) at `z`|
22
-
|[`airybiprime(z)`](@ref)| derivative of the Airy Bi function at `z`|
23
-
|[`airyaix(z)`](@ref), [`airyaiprimex(z)`](@ref), [`airybix(z)`](@ref), [`airybiprimex(z)`](@ref)| scaled Airy AI function and `k`th derivatives at `z`|
24
-
|[`besselj(nu,z)`](@ref)|[Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind of order `nu` at `z`|
25
-
|[`besselj0(z)`](@ref)|`besselj(0,z)`|
26
-
|[`besselj1(z)`](@ref)|`besselj(1,z)`|
27
-
|[`besseljx(nu,z)`](@ref)| scaled Bessel function of the first kind of order `nu` at `z`|
28
-
|[`bessely(nu,z)`](@ref)|[Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind of order `nu` at `z`|
29
-
|[`bessely0(z)`](@ref)|`bessely(0,z)`|
30
-
|[`bessely1(z)`](@ref)|`bessely(1,z)`|
31
-
|[`besselyx(nu,z)`](@ref)| scaled Bessel function of the second kind of order `nu` at `z`|
32
-
|[`besselh(nu,k,z)`](@ref)|[Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the third kind (a.k.a. Hankel function) of order `nu` at `z`; `k` must be either `1` or `2`|
|[`besseli(nu,z)`](@ref)| modified [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind of order `nu` at `z`|
38
-
|[`besselix(nu,z)`](@ref)| scaled modified Bessel function of the first kind of order `nu` at `z`|
39
-
|[`besselk(nu,z)`](@ref)| modified [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind of order `nu` at `z`|
40
-
|[`besselkx(nu,z)`](@ref)| scaled modified Bessel function of the second kind of order `nu` at `z`|
9
+
|[`erf(x)`](@ref SpecialFunctions.erf)|[error function](https://en.wikipedia.org/wiki/Error_function) at `x`|
10
+
|[`erfc(x)`](@ref SpecialFunctions.erfc)| complementary error function, i.e. the accurate version of `1-erf(x)` for large `x`|
11
+
|[`erfinv(x)`](@ref SpecialFunctions.erfinv) | inverse function to [`erf()`](@ref SpecialFunctions.erf)|
12
+
|[`erfcinv(x)`](@ref SpecialFunctions.erfcinv)| inverse function to [`erfc()`](@ref SpecialFunctions.erfc)|
13
+
|[`erfi(x)`](@ref SpecialFunctions.erfi) | imaginary error function defined as `-im * erf(x * im)`, where `im` is the imaginary unit|
14
+
|[`erfcx(x)`](@ref SpecialFunctions.erfcx)| scaled complementary error function, i.e. accurate `exp(x^2) * erfc(x)` for large `x`|
15
+
|[`dawson(x)`](@ref SpecialFunctions.dawson)| scaled imaginary error function, a.k.a. Dawson function, i.e. accurate `exp(-x^2) * erfi(x) * sqrt(pi) / 2` for large `x`|
16
+
|[`digamma(x)`](@ref SpecialFunctions.digamma) |[digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `lgamma` at `x`) |
17
+
|[`eta(x)`](@ref SpecialFunctions.eta)|[Dirichlet eta function](https://en.wikipedia.org/wiki/Dirichlet_eta_function) at `x`|
18
+
|[`zeta(x)`](@ref SpecialFunctions.zeta)|[Riemann zeta function](https://en.wikipedia.org/wiki/Riemann_zeta_function) at `x`|
19
+
|[`airyai(z)`](@ref SpecialFunctions.airyai)|[Airy Ai function](https://en.wikipedia.org/wiki/Airy_function) at `z`|
20
+
|[`airyaiprime(z)`](@ref SpecialFunctions.airyaiprime)| derivative of the Airy Ai function at `z`|
21
+
|[`airybi(z)`](@ref SpecialFunctions.airybi)|[Airy Bi function](https://en.wikipedia.org/wiki/Airy_function) at `z`|
22
+
|[`airybiprime(z)`](@ref SpecialFunctions.airybiprime)| derivative of the Airy Bi function at `z`|
23
+
|[`airyaix(z)`](@ref SpecialFunctions.airyaix), [`airyaiprimex(z)`](@ref SpecialFunctions.airyaiprimex), [`airybix(z)`](@ref SpecialFunctions.airybix), [`airybiprimex(z)`](@ref SpecialFunctions.airybiprimex) | scaled Airy Ai function and `k`th derivatives at `z`|
24
+
|[`besselj(nu,z)`](@ref SpecialFunctions.besselj)|[Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind of order `nu` at `z`|
|[`besseljx(nu,z)`](@ref SpecialFunctions.besseljx)| scaled Bessel function of the first kind of order `nu` at `z`|
28
+
|[`bessely(nu,z)`](@ref SpecialFunctions.bessely)|[Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind of order `nu` at `z`|
|[`besselyx(nu,z)`](@ref SpecialFunctions.besselyx)| scaled Bessel function of the second kind of order `nu` at `z`|
32
+
|[`besselh(nu,k,z)`](@ref SpecialFunctions.besselh)|[Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the third kind (a.k.a. Hankel function) of order `nu` at `z`; `k` must be either `1` or `2`|
|[`besseli(nu,z)`](@ref SpecialFunctions.besseli)| modified [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind of order `nu` at `z`|
38
+
|[`besselix(nu,z)`](@ref SpecialFunctions.besselix)| scaled modified Bessel function of the first kind of order `nu` at `z`|
39
+
|[`besselk(nu,z)`](@ref SpecialFunctions.besselk)| modified [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind of order `nu` at `z`|
40
+
|[`besselkx(nu,z)`](@ref SpecialFunctions.besselkx)| scaled modified Bessel function of the second kind of order `nu` at `z`|
0 commit comments