You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/src/index.md
+3Lines changed: 3 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -16,6 +16,9 @@ libraries.
16
16
|[`sinint(x)`](@ref SpecialFunctions.sinint) |[sine integral](https://en.wikipedia.org/wiki/Trigonometric_integral) at `x`|
17
17
|[`cosint(x)`](@ref SpecialFunctions.cosint) |[cosine integral](https://en.wikipedia.org/wiki/Trigonometric_integral) at `x`|
18
18
|[`digamma(x)`](@ref SpecialFunctions.digamma) |[digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `lgamma` at `x`) |
19
+
|[`invdigamma(x)`](@ref SpecialFunctions.invdigamma) |[invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
20
+
|[`trigamma(x)`](@ref SpecialFunctions.trigamma) |[trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
21
+
|[`polygamma(m,x)`](@ref SpecialFunctions.polygamma) |[polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `lgamma` function at `x`) |
19
22
|[`eta(x)`](@ref SpecialFunctions.eta) |[Dirichlet eta function](https://en.wikipedia.org/wiki/Dirichlet_eta_function) at `x`|
20
23
|[`zeta(x)`](@ref SpecialFunctions.zeta) |[Riemann zeta function](https://en.wikipedia.org/wiki/Riemann_zeta_function) at `x`|
21
24
|[`airyai(z)`](@ref SpecialFunctions.airyai) |[Airy Ai function](https://en.wikipedia.org/wiki/Airy_function) at `z`|
0 commit comments