Skip to content

Commit 73b8baa

Browse files
Sumegh-gitsimonbyrne
authored andcommitted
Added doc reference for invdigamma, trigamma , polygamma(#25) (#134)
1 parent 9d0caf9 commit 73b8baa

File tree

1 file changed

+3
-0
lines changed

1 file changed

+3
-0
lines changed

docs/src/index.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,9 @@ libraries.
1616
| [`sinint(x)`](@ref SpecialFunctions.sinint) | [sine integral](https://en.wikipedia.org/wiki/Trigonometric_integral) at `x` |
1717
| [`cosint(x)`](@ref SpecialFunctions.cosint) | [cosine integral](https://en.wikipedia.org/wiki/Trigonometric_integral) at `x` |
1818
| [`digamma(x)`](@ref SpecialFunctions.digamma) | [digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `lgamma` at `x`) |
19+
| [`invdigamma(x)`](@ref SpecialFunctions.invdigamma) | [invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
20+
| [`trigamma(x)`](@ref SpecialFunctions.trigamma) | [trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
21+
| [`polygamma(m,x)`](@ref SpecialFunctions.polygamma) | [polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `lgamma` function at `x`) |
1922
| [`eta(x)`](@ref SpecialFunctions.eta) | [Dirichlet eta function](https://en.wikipedia.org/wiki/Dirichlet_eta_function) at `x` |
2023
| [`zeta(x)`](@ref SpecialFunctions.zeta) | [Riemann zeta function](https://en.wikipedia.org/wiki/Riemann_zeta_function) at `x` |
2124
| [`airyai(z)`](@ref SpecialFunctions.airyai) | [Airy Ai function](https://en.wikipedia.org/wiki/Airy_function) at `z` |

0 commit comments

Comments
 (0)