65
65
airyai(x)
66
66
67
67
Airy function of the first kind ``\\ operatorname{Ai}(x)``.
68
+
69
+ See also: [`airyaix`](@ref), [`airyaiprime`](@ref), [`airybi`](@ref)
70
+
71
+ External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
68
72
"""
69
73
function airyai end
70
74
airyai (z:: Complex{Float64} ) = _airy (z, Int32 (0 ), Int32 (1 ))
@@ -73,6 +77,10 @@ airyai(z::Complex{Float64}) = _airy(z, Int32(0), Int32(1))
73
77
airyaiprime(x)
74
78
75
79
Derivative of the Airy function of the first kind ``\\ operatorname{Ai}'(x)``.
80
+
81
+ See also: [`airyaiprimex`](@ref), [`airyai`](@ref), [`airybi`](@ref)
82
+
83
+ External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
76
84
"""
77
85
function airyaiprime end
78
86
airyaiprime (z:: Complex{Float64} ) = _airy (z, Int32 (1 ), Int32 (1 ))
@@ -81,6 +89,10 @@ airyaiprime(z::Complex{Float64}) = _airy(z, Int32(1), Int32(1))
81
89
airybi(x)
82
90
83
91
Airy function of the second kind ``\\ operatorname{Bi}(x)``.
92
+
93
+ See also: [`airybix`](@ref), [`airybiprime`](@ref), [`airyai`](@ref)
94
+
95
+ External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
84
96
"""
85
97
function airybi end
86
98
airybi (z:: Complex{Float64} ) = _biry (z, Int32 (0 ), Int32 (1 ))
@@ -89,6 +101,10 @@ airybi(z::Complex{Float64}) = _biry(z, Int32(0), Int32(1))
89
101
airybiprime(x)
90
102
91
103
Derivative of the Airy function of the second kind ``\\ operatorname{Bi}'(x)``.
104
+
105
+ See also: [`airybiprimex`](@ref), [`airybi`](@ref), [`airyai`](@ref)
106
+
107
+ External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
92
108
"""
93
109
function airybiprime end
94
110
airybiprime (z:: Complex{Float64} ) = _biry (z, Int32 (1 ), Int32 (1 ))
@@ -98,6 +114,10 @@ airybiprime(z::Complex{Float64}) = _biry(z, Int32(1), Int32(1))
98
114
99
115
Scaled Airy function of the first kind ``\\ operatorname{Ai}(x) e^{\\ frac{2}{3} x
100
116
\\ sqrt{x}}``. Throws `DomainError` for negative `Real` arguments.
117
+
118
+ See also: [`airyai`](@ref), [`airyaiprime`](@ref), [`airybi`](@ref)
119
+
120
+ External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
101
121
"""
102
122
function airyaix end
103
123
airyaix (z:: Complex{Float64} ) = _airy (z, Int32 (0 ), Int32 (2 ))
@@ -107,6 +127,10 @@ airyaix(z::Complex{Float64}) = _airy(z, Int32(0), Int32(2))
107
127
108
128
Scaled derivative of the Airy function of the first kind ``\\ operatorname{Ai}'(x)
109
129
e^{\\ frac{2}{3} x \\ sqrt{x}}``. Throws `DomainError` for negative `Real` arguments.
130
+
131
+ See also: [`airyaiprime`](@ref), [`airyai`](@ref), [`airybi`](@ref)
132
+
133
+ External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
110
134
"""
111
135
function airyaiprimex end
112
136
airyaiprimex (z:: Complex{Float64} ) = _airy (z, Int32 (1 ), Int32 (2 ))
@@ -115,6 +139,10 @@ airyaiprimex(z::Complex{Float64}) = _airy(z, Int32(1), Int32(2))
115
139
airybix(x)
116
140
117
141
Scaled Airy function of the second kind ``\\ operatorname{Bi}(x) e^{- \\ left| \\ operatorname{Re} \\ left( \\ frac{2}{3} x \\ sqrt{x} \\ right) \\ right|}``.
142
+
143
+ See also: [`airybi`](@ref), [`airybiprime`](@ref), [`airyai`](@ref)
144
+
145
+ External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
118
146
"""
119
147
function airybix end
120
148
airybix (z:: Complex{Float64} ) = _biry (z, Int32 (0 ), Int32 (2 ))
@@ -123,6 +151,10 @@ airybix(z::Complex{Float64}) = _biry(z, Int32(0), Int32(2))
123
151
airybiprimex(x)
124
152
125
153
Scaled derivative of the Airy function of the second kind ``\\ operatorname{Bi}'(x) e^{- \\ left| \\ operatorname{Re} \\ left( \\ frac{2}{3} x \\ sqrt{x} \\ right) \\ right|}``.
154
+
155
+ See also: [`airybiprime`](@ref), [`airybi`](@ref), [`airyai`](@ref)
156
+
157
+ External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
126
158
"""
127
159
function airybiprimex end
128
160
airybiprimex (z:: Complex{Float64} ) = _biry (z, Int32 (1 ), Int32 (2 ))
267
299
Bessel function of the third kind of order `nu` (the Hankel function). `k` is either 1 or 2,
268
300
selecting [`hankelh1`](@ref) or [`hankelh2`](@ref), respectively.
269
301
`k` defaults to 1 if it is omitted.
270
- (See also [`besselhx`](@ref) for an exponentially scaled variant.)
302
+
303
+ External links: [DLMF](https://dlmf.nist.gov/10.2.5) and [DLMF](https://dlmf.nist.gov/10.2.6), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
304
+
305
+ See also: [`besselhx`](@ref) for an exponentially scaled variant.
271
306
"""
272
307
function besselh end
273
308
@@ -291,6 +326,10 @@ proportional to ``\\exp(∓iz)/\\sqrt{z}`` for large ``|z|``, and so the
291
326
[`besselh`](@ref) function is susceptible to overflow or underflow
292
327
when `z` has a large imaginary part. The `besselhx` function cancels this
293
328
exponential factor (analytically), so it avoids these problems.
329
+
330
+ External links: [DLMF](https://dlmf.nist.gov/10.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
331
+
332
+ See also: [`besselh`](@ref)
294
333
"""
295
334
function besselhx end
296
335
391
430
besseli(nu, x)
392
431
393
432
Modified Bessel function of the first kind of order `nu`, ``I_\\ nu(x)``.
433
+
434
+ External links: [DLMF](https://dlmf.nist.gov/10.25.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1)
435
+
436
+ See also: [`besselix(nu,x)`](@ref SpecialFunctions.besselix), [`besselj(nu,x)`](@ref SpecialFunctions.besselj), [`besselk(nu,x)`](@ref SpecialFunctions.besselk)
394
437
"""
395
438
function besseli (nu:: Real , x:: AbstractFloat )
396
439
if x < 0 && ! isinteger (nu)
403
446
besselix(nu, x)
404
447
405
448
Scaled modified Bessel function of the first kind of order `nu`, ``I_\\ nu(x) e^{- | \\ operatorname{Re}(x) |}``.
449
+
450
+ External links: [DLMF](https://dlmf.nist.gov/10.25.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1)
451
+
452
+ See also: [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselj(nu,x)`](@ref SpecialFunctions.besselj), [`besselk(nu,x)`](@ref SpecialFunctions.besselk)
406
453
"""
407
454
function besselix (nu:: Real , x:: AbstractFloat )
408
455
if x < 0 && ! isinteger (nu)
415
462
besselj(nu, x)
416
463
417
464
Bessel function of the first kind of order `nu`, ``J_\\ nu(x)``.
465
+
466
+ External links: [DLMF](https://dlmf.nist.gov/10.2.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1)
467
+
468
+ See also: [`besseljx(nu,x)`](@ref SpecialFunctions.besseljx), [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselk(nu,x)`](@ref SpecialFunctions.besselk)
418
469
"""
419
470
function besselj (nu:: Real , x:: AbstractFloat )
420
471
if isinteger (nu)
431
482
besseljx(nu, x)
432
483
433
484
Scaled Bessel function of the first kind of order `nu`, ``J_\\ nu(x) e^{- | \\ operatorname{Im}(x) |}``.
485
+
486
+ External links: [DLMF](https://dlmf.nist.gov/10.2.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1)
487
+
488
+ See also: [`besselj(nu,x)`](@ref SpecialFunctions.besselj), [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselk(nu,x)`](@ref SpecialFunctions.besselk)
434
489
"""
435
490
function besseljx (nu:: Real , x:: AbstractFloat )
436
491
if x < 0 && ! isinteger (nu)
443
498
besselk(nu, x)
444
499
445
500
Modified Bessel function of the second kind of order `nu`, ``K_\\ nu(x)``.
501
+
502
+ External links: [DLMF](https://dlmf.nist.gov/10.25.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1)
503
+
504
+ See also: See also: [`besselkx(nu,x)`](@ref SpecialFunctions.besselkx), [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselj(nu,x)`](@ref SpecialFunctions.besselj)
446
505
"""
447
506
function besselk (nu:: Real , x:: AbstractFloat )
448
507
if x < 0
457
516
besselkx(nu, x)
458
517
459
518
Scaled modified Bessel function of the second kind of order `nu`, ``K_\\ nu(x) e^x``.
519
+
520
+ External links: [DLMF](https://dlmf.nist.gov/10.25.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1)
521
+
522
+ See also: [`besselk(nu,x)`](@ref SpecialFunctions.besselk), [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselj(nu,x)`](@ref SpecialFunctions.besselj)
460
523
"""
461
524
function besselkx (nu:: Real , x:: AbstractFloat )
462
525
if x < 0
471
534
bessely(nu, x)
472
535
473
536
Bessel function of the second kind of order `nu`, ``Y_\\ nu(x)``.
537
+
538
+ External links: [DLMF](https://dlmf.nist.gov/10.2.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1)
539
+
540
+ See also [`besselyx(nu,x)`](@ref SpecialFunctions.besselyx) for a scaled variant.
474
541
"""
475
542
function bessely (nu:: Real , x:: AbstractFloat )
476
543
if x < 0
486
553
487
554
Scaled Bessel function of the second kind of order `nu`,
488
555
``Y_\\ nu(x) e^{- | \\ operatorname{Im}(x) |}``.
556
+
557
+ External links: [DLMF](https://dlmf.nist.gov/10.2.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1)
558
+
559
+ See also [`bessely(nu,x)`](@ref SpecialFunctions.bessely)
489
560
"""
490
561
function besselyx (nu:: Real , x:: AbstractFloat )
491
562
if x < 0
529
600
besselj0(x)
530
601
531
602
Bessel function of the first kind of order 0, ``J_0(x)``.
603
+
604
+ External links: [DLMF](https://dlmf.nist.gov/10.2.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1)
605
+
606
+ See also: [`besselj(nu,x)`](@ref SpecialFunctions.besselj)
532
607
"""
533
608
function besselj0 (x:: BigFloat )
534
609
z = BigFloat ()
540
615
besselj1(x)
541
616
542
617
Bessel function of the first kind of order 1, ``J_1(x)``.
618
+
619
+ External links: [DLMF](https://dlmf.nist.gov/10.2.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1)
620
+
621
+ See also: [`besselj(nu,x)`](@ref SpecialFunctions.besselj)
543
622
"""
544
623
function besselj1 (x:: BigFloat )
545
624
z = BigFloat ()
557
636
bessely0(x)
558
637
559
638
Bessel function of the second kind of order 0, ``Y_0(x)``.
639
+
640
+ External links: [DLMF](https://dlmf.nist.gov/10.2.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1)
641
+
642
+ See also: [`bessely(nu,x)`](@ref SpecialFunctions.bessely)
560
643
"""
561
644
function bessely0 (x:: BigFloat )
562
645
if x < 0
571
654
bessely1(x)
572
655
573
656
Bessel function of the second kind of order 1, ``Y_1(x)``.
657
+
658
+ External links: [DLMF](https://dlmf.nist.gov/10.2.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1)
659
+
660
+ See also: [`bessely(nu,x)`](@ref SpecialFunctions.bessely)
574
661
"""
575
662
function bessely1 (x:: BigFloat )
576
663
if x < 0
@@ -594,26 +681,42 @@ end
594
681
hankelh1(nu, x)
595
682
596
683
Bessel function of the third kind of order `nu`, ``H^{(1)}_\\ nu(x)``.
684
+
685
+ External links: [DLMF](https://dlmf.nist.gov/10.2.5), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
686
+
687
+ See also: [`hankelh1x`](@ref SpecialFunctions.hankelh1x)
597
688
"""
598
689
hankelh1 (nu, z) = besselh (nu, 1 , z)
599
690
600
691
"""
601
692
hankelh2(nu, x)
602
693
603
694
Bessel function of the third kind of order `nu`, ``H^{(2)}_\\ nu(x)``.
695
+
696
+ External links: [DLMF](https://dlmf.nist.gov/10.2.6), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
697
+
698
+ See also: [`hankelh2x(nu,x)`](@ref SpecialFunctions.hankelh2x)
604
699
"""
605
700
hankelh2 (nu, z) = besselh (nu, 2 , z)
606
701
607
702
"""
608
703
hankelh1x(nu, x)
609
704
610
705
Scaled Bessel function of the third kind of order `nu`, ``H^{(1)}_\\ nu(x) e^{-x i}``.
706
+
707
+ External links: [DLMF](https://dlmf.nist.gov/10.2.5), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
708
+
709
+ See also: [`hankelh1`](@ref SpecialFunctions.hankelh1)
611
710
"""
612
711
hankelh1x (nu, z) = besselhx (nu, 1 , z)
613
712
614
713
"""
615
714
hankelh2x(nu, x)
616
715
617
716
Scaled Bessel function of the third kind of order `nu`, ``H^{(2)}_\\ nu(x) e^{x i}``.
717
+
718
+ External links: [DLMF](https://dlmf.nist.gov/10.2.6), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
719
+
720
+ See also: [`hankelh2(nu,x)`](@ref SpecialFunctions.hankelh2)
618
721
"""
619
722
hankelh2x (nu, z) = besselhx (nu, 2 , z)
0 commit comments