Skip to content

Commit 8b4f545

Browse files
AshtonSBradleysimonbyrne
authored andcommitted
update docs for beta_inc, gamma, gamma_inc_inv, zeta, bessels (#199)
* update docs for beta_inc * tidy up links for gamma_inc, beta_inc * links for bessel functions. small format for sinint, cosint * cross and external links for bessel, hankel, airy * small tidy ups in refs * \operatornane is bugging Travis?
1 parent acdb831 commit 8b4f545

File tree

8 files changed

+219
-55
lines changed

8 files changed

+219
-55
lines changed

docs/src/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ In this case, the symbols will need to be explicitly imported or called
2323
with the prefix `SpecialFunctions`.
2424
This is not necessary for Julia versions 0.6 and later.
2525

26-
On Julia 0.7, [openspecfun](https://github.com/JuliaLang/openspecfun) is not build as
26+
On Julia 0.7, [openspecfun](https://github.com/JuliaLang/openspecfun) is not built as
2727
part of Julia.
2828
Thus for Julia versions 0.7 and later, installing this package downloads openspecfun.
2929
Binaries of openspecfun are available for macOS, Windows, and Linux (glibc >= 2.6).

src/bessel.jl

Lines changed: 104 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,10 @@ end
6565
airyai(x)
6666
6767
Airy function of the first kind ``\\operatorname{Ai}(x)``.
68+
69+
See also: [`airyaix`](@ref), [`airyaiprime`](@ref), [`airybi`](@ref)
70+
71+
External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
6872
"""
6973
function airyai end
7074
airyai(z::Complex{Float64}) = _airy(z, Int32(0), Int32(1))
@@ -73,6 +77,10 @@ airyai(z::Complex{Float64}) = _airy(z, Int32(0), Int32(1))
7377
airyaiprime(x)
7478
7579
Derivative of the Airy function of the first kind ``\\operatorname{Ai}'(x)``.
80+
81+
See also: [`airyaiprimex`](@ref), [`airyai`](@ref), [`airybi`](@ref)
82+
83+
External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
7684
"""
7785
function airyaiprime end
7886
airyaiprime(z::Complex{Float64}) = _airy(z, Int32(1), Int32(1))
@@ -81,6 +89,10 @@ airyaiprime(z::Complex{Float64}) = _airy(z, Int32(1), Int32(1))
8189
airybi(x)
8290
8391
Airy function of the second kind ``\\operatorname{Bi}(x)``.
92+
93+
See also: [`airybix`](@ref), [`airybiprime`](@ref), [`airyai`](@ref)
94+
95+
External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
8496
"""
8597
function airybi end
8698
airybi(z::Complex{Float64}) = _biry(z, Int32(0), Int32(1))
@@ -89,6 +101,10 @@ airybi(z::Complex{Float64}) = _biry(z, Int32(0), Int32(1))
89101
airybiprime(x)
90102
91103
Derivative of the Airy function of the second kind ``\\operatorname{Bi}'(x)``.
104+
105+
See also: [`airybiprimex`](@ref), [`airybi`](@ref), [`airyai`](@ref)
106+
107+
External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
92108
"""
93109
function airybiprime end
94110
airybiprime(z::Complex{Float64}) = _biry(z, Int32(1), Int32(1))
@@ -98,6 +114,10 @@ airybiprime(z::Complex{Float64}) = _biry(z, Int32(1), Int32(1))
98114
99115
Scaled Airy function of the first kind ``\\operatorname{Ai}(x) e^{\\frac{2}{3} x
100116
\\sqrt{x}}``. Throws `DomainError` for negative `Real` arguments.
117+
118+
See also: [`airyai`](@ref), [`airyaiprime`](@ref), [`airybi`](@ref)
119+
120+
External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
101121
"""
102122
function airyaix end
103123
airyaix(z::Complex{Float64}) = _airy(z, Int32(0), Int32(2))
@@ -107,6 +127,10 @@ airyaix(z::Complex{Float64}) = _airy(z, Int32(0), Int32(2))
107127
108128
Scaled derivative of the Airy function of the first kind ``\\operatorname{Ai}'(x)
109129
e^{\\frac{2}{3} x \\sqrt{x}}``. Throws `DomainError` for negative `Real` arguments.
130+
131+
See also: [`airyaiprime`](@ref), [`airyai`](@ref), [`airybi`](@ref)
132+
133+
External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
110134
"""
111135
function airyaiprimex end
112136
airyaiprimex(z::Complex{Float64}) = _airy(z, Int32(1), Int32(2))
@@ -115,6 +139,10 @@ airyaiprimex(z::Complex{Float64}) = _airy(z, Int32(1), Int32(2))
115139
airybix(x)
116140
117141
Scaled Airy function of the second kind ``\\operatorname{Bi}(x) e^{- \\left| \\operatorname{Re} \\left( \\frac{2}{3} x \\sqrt{x} \\right) \\right|}``.
142+
143+
See also: [`airybi`](@ref), [`airybiprime`](@ref), [`airyai`](@ref)
144+
145+
External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
118146
"""
119147
function airybix end
120148
airybix(z::Complex{Float64}) = _biry(z, Int32(0), Int32(2))
@@ -123,6 +151,10 @@ airybix(z::Complex{Float64}) = _biry(z, Int32(0), Int32(2))
123151
airybiprimex(x)
124152
125153
Scaled derivative of the Airy function of the second kind ``\\operatorname{Bi}'(x) e^{- \\left| \\operatorname{Re} \\left( \\frac{2}{3} x \\sqrt{x} \\right) \\right|}``.
154+
155+
See also: [`airybiprime`](@ref), [`airybi`](@ref), [`airyai`](@ref)
156+
157+
External links: [DLMF](https://dlmf.nist.gov/9.2), [Wikipedia](https://en.wikipedia.org/wiki/Airy_function)
126158
"""
127159
function airybiprimex end
128160
airybiprimex(z::Complex{Float64}) = _biry(z, Int32(1), Int32(2))
@@ -267,7 +299,10 @@ end
267299
Bessel function of the third kind of order `nu` (the Hankel function). `k` is either 1 or 2,
268300
selecting [`hankelh1`](@ref) or [`hankelh2`](@ref), respectively.
269301
`k` defaults to 1 if it is omitted.
270-
(See also [`besselhx`](@ref) for an exponentially scaled variant.)
302+
303+
External links: [DLMF](https://dlmf.nist.gov/10.2.5) and [DLMF](https://dlmf.nist.gov/10.2.6), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
304+
305+
See also: [`besselhx`](@ref) for an exponentially scaled variant.
271306
"""
272307
function besselh end
273308

@@ -291,6 +326,10 @@ proportional to ``\\exp(∓iz)/\\sqrt{z}`` for large ``|z|``, and so the
291326
[`besselh`](@ref) function is susceptible to overflow or underflow
292327
when `z` has a large imaginary part. The `besselhx` function cancels this
293328
exponential factor (analytically), so it avoids these problems.
329+
330+
External links: [DLMF](https://dlmf.nist.gov/10.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
331+
332+
See also: [`besselh`](@ref)
294333
"""
295334
function besselhx end
296335

@@ -391,6 +430,10 @@ end
391430
besseli(nu, x)
392431
393432
Modified Bessel function of the first kind of order `nu`, ``I_\\nu(x)``.
433+
434+
External links: [DLMF](https://dlmf.nist.gov/10.25.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1)
435+
436+
See also: [`besselix(nu,x)`](@ref SpecialFunctions.besselix), [`besselj(nu,x)`](@ref SpecialFunctions.besselj), [`besselk(nu,x)`](@ref SpecialFunctions.besselk)
394437
"""
395438
function besseli(nu::Real, x::AbstractFloat)
396439
if x < 0 && !isinteger(nu)
@@ -403,6 +446,10 @@ end
403446
besselix(nu, x)
404447
405448
Scaled modified Bessel function of the first kind of order `nu`, ``I_\\nu(x) e^{- | \\operatorname{Re}(x) |}``.
449+
450+
External links: [DLMF](https://dlmf.nist.gov/10.25.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1)
451+
452+
See also: [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselj(nu,x)`](@ref SpecialFunctions.besselj), [`besselk(nu,x)`](@ref SpecialFunctions.besselk)
406453
"""
407454
function besselix(nu::Real, x::AbstractFloat)
408455
if x < 0 && !isinteger(nu)
@@ -415,6 +462,10 @@ end
415462
besselj(nu, x)
416463
417464
Bessel function of the first kind of order `nu`, ``J_\\nu(x)``.
465+
466+
External links: [DLMF](https://dlmf.nist.gov/10.2.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1)
467+
468+
See also: [`besseljx(nu,x)`](@ref SpecialFunctions.besseljx), [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselk(nu,x)`](@ref SpecialFunctions.besselk)
418469
"""
419470
function besselj(nu::Real, x::AbstractFloat)
420471
if isinteger(nu)
@@ -431,6 +482,10 @@ end
431482
besseljx(nu, x)
432483
433484
Scaled Bessel function of the first kind of order `nu`, ``J_\\nu(x) e^{- | \\operatorname{Im}(x) |}``.
485+
486+
External links: [DLMF](https://dlmf.nist.gov/10.2.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1)
487+
488+
See also: [`besselj(nu,x)`](@ref SpecialFunctions.besselj), [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselk(nu,x)`](@ref SpecialFunctions.besselk)
434489
"""
435490
function besseljx(nu::Real, x::AbstractFloat)
436491
if x < 0 && !isinteger(nu)
@@ -443,6 +498,10 @@ end
443498
besselk(nu, x)
444499
445500
Modified Bessel function of the second kind of order `nu`, ``K_\\nu(x)``.
501+
502+
External links: [DLMF](https://dlmf.nist.gov/10.25.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1)
503+
504+
See also: See also: [`besselkx(nu,x)`](@ref SpecialFunctions.besselkx), [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselj(nu,x)`](@ref SpecialFunctions.besselj)
446505
"""
447506
function besselk(nu::Real, x::AbstractFloat)
448507
if x < 0
@@ -457,6 +516,10 @@ end
457516
besselkx(nu, x)
458517
459518
Scaled modified Bessel function of the second kind of order `nu`, ``K_\\nu(x) e^x``.
519+
520+
External links: [DLMF](https://dlmf.nist.gov/10.25.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1)
521+
522+
See also: [`besselk(nu,x)`](@ref SpecialFunctions.besselk), [`besseli(nu,x)`](@ref SpecialFunctions.besseli), [`besselj(nu,x)`](@ref SpecialFunctions.besselj)
460523
"""
461524
function besselkx(nu::Real, x::AbstractFloat)
462525
if x < 0
@@ -471,6 +534,10 @@ end
471534
bessely(nu, x)
472535
473536
Bessel function of the second kind of order `nu`, ``Y_\\nu(x)``.
537+
538+
External links: [DLMF](https://dlmf.nist.gov/10.2.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1)
539+
540+
See also [`besselyx(nu,x)`](@ref SpecialFunctions.besselyx) for a scaled variant.
474541
"""
475542
function bessely(nu::Real, x::AbstractFloat)
476543
if x < 0
@@ -486,6 +553,10 @@ end
486553
487554
Scaled Bessel function of the second kind of order `nu`,
488555
``Y_\\nu(x) e^{- | \\operatorname{Im}(x) |}``.
556+
557+
External links: [DLMF](https://dlmf.nist.gov/10.2.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1)
558+
559+
See also [`bessely(nu,x)`](@ref SpecialFunctions.bessely)
489560
"""
490561
function besselyx(nu::Real, x::AbstractFloat)
491562
if x < 0
@@ -529,6 +600,10 @@ end
529600
besselj0(x)
530601
531602
Bessel function of the first kind of order 0, ``J_0(x)``.
603+
604+
External links: [DLMF](https://dlmf.nist.gov/10.2.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1)
605+
606+
See also: [`besselj(nu,x)`](@ref SpecialFunctions.besselj)
532607
"""
533608
function besselj0(x::BigFloat)
534609
z = BigFloat()
@@ -540,6 +615,10 @@ end
540615
besselj1(x)
541616
542617
Bessel function of the first kind of order 1, ``J_1(x)``.
618+
619+
External links: [DLMF](https://dlmf.nist.gov/10.2.2), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1)
620+
621+
See also: [`besselj(nu,x)`](@ref SpecialFunctions.besselj)
543622
"""
544623
function besselj1(x::BigFloat)
545624
z = BigFloat()
@@ -557,6 +636,10 @@ end
557636
bessely0(x)
558637
559638
Bessel function of the second kind of order 0, ``Y_0(x)``.
639+
640+
External links: [DLMF](https://dlmf.nist.gov/10.2.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1)
641+
642+
See also: [`bessely(nu,x)`](@ref SpecialFunctions.bessely)
560643
"""
561644
function bessely0(x::BigFloat)
562645
if x < 0
@@ -571,6 +654,10 @@ end
571654
bessely1(x)
572655
573656
Bessel function of the second kind of order 1, ``Y_1(x)``.
657+
658+
External links: [DLMF](https://dlmf.nist.gov/10.2.3), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1)
659+
660+
See also: [`bessely(nu,x)`](@ref SpecialFunctions.bessely)
574661
"""
575662
function bessely1(x::BigFloat)
576663
if x < 0
@@ -594,26 +681,42 @@ end
594681
hankelh1(nu, x)
595682
596683
Bessel function of the third kind of order `nu`, ``H^{(1)}_\\nu(x)``.
684+
685+
External links: [DLMF](https://dlmf.nist.gov/10.2.5), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
686+
687+
See also: [`hankelh1x`](@ref SpecialFunctions.hankelh1x)
597688
"""
598689
hankelh1(nu, z) = besselh(nu, 1, z)
599690

600691
"""
601692
hankelh2(nu, x)
602693
603694
Bessel function of the third kind of order `nu`, ``H^{(2)}_\\nu(x)``.
695+
696+
External links: [DLMF](https://dlmf.nist.gov/10.2.6), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
697+
698+
See also: [`hankelh2x(nu,x)`](@ref SpecialFunctions.hankelh2x)
604699
"""
605700
hankelh2(nu, z) = besselh(nu, 2, z)
606701

607702
"""
608703
hankelh1x(nu, x)
609704
610705
Scaled Bessel function of the third kind of order `nu`, ``H^{(1)}_\\nu(x) e^{-x i}``.
706+
707+
External links: [DLMF](https://dlmf.nist.gov/10.2.5), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
708+
709+
See also: [`hankelh1`](@ref SpecialFunctions.hankelh1)
611710
"""
612711
hankelh1x(nu, z) = besselhx(nu, 1, z)
613712

614713
"""
615714
hankelh2x(nu, x)
616715
617716
Scaled Bessel function of the third kind of order `nu`, ``H^{(2)}_\\nu(x) e^{x i}``.
717+
718+
External links: [DLMF](https://dlmf.nist.gov/10.2.6), [Wikipedia](https://en.wikipedia.org/wiki/Bessel_function#Hankel_functions:_H(1)%CE%B1,_H(2)%CE%B1)
719+
720+
See also: [`hankelh2(nu,x)`](@ref SpecialFunctions.hankelh2)
618721
"""
619722
hankelh2x(nu, z) = besselhx(nu, 2, z)

0 commit comments

Comments
 (0)