@@ -504,7 +504,8 @@ and ``P(a,x)/x^a`` is given by:
504504(1 - J) / \G amma(a+1)
505505```
506506resulting from term-by-term integration of `gamma_inc(a,x,ind)`.
507- This is used when `a < 1` and `x < 1.1` - Refer Eqn (9) in the paper.
507+ This is used when `a < 1` and `x < 1.1` - Refer Eqn (9) in the
508+ [paper by DiDonato & Morris (1986)](@cite didonato_1986).
508509
509510See also: [`gamma_inc(a,x,ind)`](@ref SpecialFunctions.gamma_inc)
510511"""
@@ -553,8 +554,8 @@ T(a,\lambda) = \sum_{0}^{N} c_{k}(z)a^{-k}
553554This is a higher accuracy approximation of Temme expansion, which deals with
554555the region near `a ≈ x` with `a` large.
555556Refer Appendix F in the paper for the extensive set of coefficients calculated
556- using Brent's multiple precision arithmetic(set at 50 digits) in
557- > Brent, R. P. A Fortran multiple-precision arithmetic package, ACM Trans. Math. Softw. 4 (1978), 57-70, doi: 10.1145/355769.355775 .
557+ using Brent's multiple precision arithmetic (set at 50 digits) in
558+ [ Brent (1978)](@cite brent_1978) .
558559
559560External links: [DLMF 8.12.8](https://dlmf.nist.gov/8.12.8)
560561
700701
701702Compute using Finite Sums for ``Q(a,x)`` when `a >= 1 && 2a` is integer.
702703Used when `a <= x <= x0` and `a = n/2`.
703- Refer Eqn (14) in the paper.
704+ Refer Eqn (14) in the [ paper by DiDonato and Morris (1986)](@cite didonato_1986) .
704705
705706See also: [`gamma_inc(a,x,ind)`](@ref SpecialFunctions.gamma_inc)
706707"""
@@ -820,10 +821,8 @@ function gamma_inc_inv_alarge(a::Float64, minpq::Float64, pcase::Bool)
820821 fp = - sqrt (inv2π* a)* exp (- 0.5 * a* eta* eta)/ gammax (a)
821822 return (x0, fp)
822823end
823- # Reference : 'Computation of the incomplete gamma function ratios and their inverse' by Armido R DiDonato, Alfred H Morris.
824- # Published in Journal: ACM Transactions on Mathematical Software (TOMS)
825- # Volume 12 Issue 4, Dec. 1986 Pages 377-393
826- # doi>10.1145/22721.23109
824+ # Reference: # DiDonato & Morris (1986), doi: 10.1145/22721.23109,
825+ # citation key: didonato_1986
827826
828827@doc raw """
829828 gamma_inc(a,x,IND=0)
@@ -841,8 +840,10 @@ In terms of these, the lower incomplete gamma function is
841840``\g amma(a,x) = P(a,x) \G amma(a)`` and the upper incomplete
842841gamma function is ``\G amma(a,x) = Q(a,x) \G amma(a)``.
843842
844- `IND ∈ [0,1,2]` sets accuracy: `IND=0` means 14 significant digits accuracy,
845- `IND=1` means 6 significant digit, and `IND=2` means only 3 digit accuracy.
843+ `IND ∈ [0,1,2]` sets accuracy:
844+ - `IND=0` means 14 significant digits accuracy,
845+ - `IND=1` means 6 significant digit, and
846+ - `IND=2` means only 3 digit accuracy.
846847
847848External links:
848849[DLMF 8.2.4](https://dlmf.nist.gov/8.2.4),
0 commit comments