9393function apply! (Hψ, op:: FourierMultiplication , ψ)
9494 Hψ. fourier .+ = op. multiplier .* ψ. fourier
9595end
96- Matrix (op:: FourierMultiplication ) = Array (Diagonal (op. multiplier))
96+ Base . Matrix (op:: FourierMultiplication ) = Array (Diagonal (op. multiplier))
9797
9898"""
9999Nonlocal operator in Fourier space in Kleinman-Bylander format,
110110function apply! (Hψ, op:: NonlocalOperator , ψ)
111111 mul! (Hψ. fourier, op. P, (op. D * (op. P' * ψ. fourier)), 1 , 1 )
112112end
113- Matrix (op:: NonlocalOperator ) = op. P * op. D * op. P'
113+ Base . Matrix (op:: NonlocalOperator ) = op. P * op. D * op. P'
114114
115115"""
116116Magnetic field operator A⋅(-i∇).
@@ -130,7 +130,7 @@ function apply!(Hψ, op::MagneticFieldOperator, ψ)
130130 Hψ. real .+ = op. Apot[α] .* ∂αψ_real
131131 end
132132end
133- # TODO Implement Matrix(op::MagneticFieldOperator)
133+ # TODO Implement Base. Matrix(op::MagneticFieldOperator)
134134
135135@doc raw """
136136Nonlocal "divAgrad" operator ``-½ ∇ ⋅ (A ∇)`` where ``A`` is a scalar field on the
@@ -153,7 +153,7 @@ function apply!(Hψ, op::DivAgradOperator, ψ;
153153 Hψ. fourier .- = im .* G_plus_k[α] .* A∇ψ ./ 2
154154 end
155155end
156- # TODO Implement Matrix(op::DivAgradOperator)
156+ # TODO Implement Base. Matrix(op::DivAgradOperator)
157157
158158
159159# Optimize RFOs by combining terms that can be combined
0 commit comments