1
1
function Base. ctranspose {T} (D:: DArray{T,2} )
2
2
DArray (reverse (size (D)), procs (D)) do I
3
- lp = Array (T, map (length, I))
3
+ lp = Array {T} ( map (length, I))
4
4
rp = convert (Array, D[reverse (I)... ])
5
5
ctranspose! (lp, rp)
6
6
end
7
7
end
8
8
9
9
function Base. transpose {T} (D:: DArray{T,2} )
10
10
DArray (reverse (size (D)), procs (D)) do I
11
- lp = Array (T, map (length, I))
11
+ lp = Array {T} ( map (length, I))
12
12
rp = convert (Array, D[reverse (I)... ])
13
13
transpose! (lp, rp)
14
14
end
@@ -91,7 +91,7 @@ function A_mul_B!(α::Number, A::DMatrix, x::AbstractVector, β::Number, y::DVec
91
91
end
92
92
93
93
# Multiply on each tile of A
94
- R = Array ( Future, size (A. pids)... )
94
+ R = Array { Future} ( size (A. pids)... )
95
95
for j = 1 : size (A. pids, 2 )
96
96
xj = x[A. cuts[2 ][j]: A. cuts[2 ][j + 1 ] - 1 ]
97
97
for i = 1 : size (A. pids, 1 )
@@ -135,7 +135,7 @@ function Ac_mul_B!(α::Number, A::DMatrix, x::AbstractVector, β::Number, y::DVe
135
135
end
136
136
137
137
# Multiply on each tile of A
138
- R = Array ( Future, reverse (size (A. pids))... )
138
+ R = Array { Future} ( reverse (size (A. pids))... )
139
139
for j = 1 : size (A. pids, 1 )
140
140
xj = x[A. cuts[1 ][j]: A. cuts[1 ][j + 1 ] - 1 ]
141
141
for i = 1 : size (A. pids, 2 )
@@ -201,9 +201,9 @@ function _matmatmul!(α::Number, A::DMatrix, B::AbstractMatrix, β::Number, C::D
201
201
202
202
# Multiply on each tile of A
203
203
if tA == ' N'
204
- R = Array ( Future, size (procs (A))... , size (procs (C), 2 ))
204
+ R = Array { Future} ( size (procs (A))... , size (procs (C), 2 ))
205
205
else
206
- R = Array ( Future, reverse (size (procs (A)))... , size (procs (C), 2 ))
206
+ R = Array { Future} ( reverse (size (procs (A)))... , size (procs (C), 2 ))
207
207
end
208
208
for j = 1 : size (A. pids, Ad2)
209
209
for k = 1 : size (C. pids, 2 )
@@ -258,12 +258,12 @@ _matmul_op = (t,s) -> t*s + t*s
258
258
259
259
function (* )(A:: DMatrix , x:: AbstractVector )
260
260
T = Base. promote_op (_matmul_op, eltype (A), eltype (x))
261
- y = DArray (I -> Array (T, map (length, I)), (size (A, 1 ),), procs (A)[:,1 ], (size (procs (A), 1 ),))
261
+ y = DArray (I -> Array {T} ( map (length, I)), (size (A, 1 ),), procs (A)[:,1 ], (size (procs (A), 1 ),))
262
262
return A_mul_B! (one (T), A, x, zero (T), y)
263
263
end
264
264
function (* )(A:: DMatrix , B:: AbstractMatrix )
265
265
T = Base. promote_op (_matmul_op, eltype (A), eltype (B))
266
- C = DArray (I -> Array (T, map (length, I)),
266
+ C = DArray (I -> Array {T} ( map (length, I)),
267
267
(size (A, 1 ), size (B, 2 )),
268
268
procs (A)[:,1 : min (size (procs (A), 2 ), size (procs (B), 2 ))],
269
269
(size (procs (A), 1 ), min (size (procs (A), 2 ), size (procs (B), 2 ))))
@@ -272,15 +272,15 @@ end
272
272
273
273
function Ac_mul_B (A:: DMatrix , x:: AbstractVector )
274
274
T = Base. promote_op (_matmul_op, eltype (A), eltype (x))
275
- y = DArray (I -> Array (T, map (length, I)),
275
+ y = DArray (I -> Array {T} ( map (length, I)),
276
276
(size (A, 2 ),),
277
277
procs (A)[1 ,:],
278
278
(size (procs (A), 2 ),))
279
279
return Ac_mul_B! (one (T), A, x, zero (T), y)
280
280
end
281
281
function Ac_mul_B (A:: DMatrix , B:: AbstractMatrix )
282
282
T = Base. promote_op (_matmul_op, eltype (A), eltype (B))
283
- C = DArray (I -> Array (T, map (length, I)), (size (A, 2 ),
283
+ C = DArray (I -> Array {T} ( map (length, I)), (size (A, 2 ),
284
284
size (B, 2 )),
285
285
procs (A)[1 : min (size (procs (A), 1 ), size (procs (B), 2 )),:],
286
286
(size (procs (A), 2 ), min (size (procs (A), 1 ), size (procs (B), 2 ))))
0 commit comments