@@ -9,9 +9,9 @@ On a Cartesian grid, this results in:
99where
1010``` math
1111\begin{aligned}
12- \mathcal{E}_x^{i,j,k} &= \dfrac{1}{2}\left( \dfrac{\Phi_{i+1,j,k}-\Phi_{i+1,j,k}}{x_{i+1} - x_{i}} + \dfrac{\Phi_{i,j,k}-\Phi_{i-1,j,k}}{x_{i} - x_{i-1}} \right)\hspace{10pt},\\
13- \mathcal{E}_y^{i,j,k} &= \dfrac{1}{2}\left( \dfrac{\Phi_{i,j+1,k}-\Phi_{i,j,k}}{y_{j+1} - y_{j}} + \dfrac{\Phi_{i,j,k}-\Phi_{i,j-1,k}}{y_{j} - y_{j-1}} \right)\hspace{10pt},\\
14- \mathcal{E}_z^{i,j,k} &= \dfrac{1}{2}\left( \dfrac{\Phi_{i,j,k+1}-\Phi_{i,j,k}}{z_{k+1} - z_{k}} + \dfrac{\Phi_{i,j,k}-\Phi_{i,j,k-1}}{z_{k} - z_{k-1}} \right)\hspace{10pt}.
12+ \mathcal{E}_x^{i,j,k} &= - \dfrac{1}{2}\left( \dfrac{\Phi_{i+1,j,k}-\Phi_{i+1,j,k}}{x_{i+1} - x_{i}} + \dfrac{\Phi_{i,j,k}-\Phi_{i-1,j,k}}{x_{i} - x_{i-1}} \right)\hspace{10pt},\\
13+ \mathcal{E}_y^{i,j,k} &= - \dfrac{1}{2}\left( \dfrac{\Phi_{i,j+1,k}-\Phi_{i,j,k}}{y_{j+1} - y_{j}} + \dfrac{\Phi_{i,j,k}-\Phi_{i,j-1,k}}{y_{j} - y_{j-1}} \right)\hspace{10pt},\\
14+ \mathcal{E}_z^{i,j,k} &= - \dfrac{1}{2}\left( \dfrac{\Phi_{i,j,k+1}-\Phi_{i,j,k}}{z_{k+1} - z_{k}} + \dfrac{\Phi_{i,j,k}-\Phi_{i,j,k-1}}{z_{k} - z_{k-1}} \right)\hspace{10pt}.
1515\end{aligned}
1616```
1717
@@ -23,9 +23,9 @@ On a cylindrical grid, the calculation is:
2323where
2424``` math
2525\begin{aligned}
26- \mathcal{E}_r^{i,j,k} &= \dfrac{1}{2}\left(\dfrac{\Phi_{i+1,j,k}-\Phi_{i,j,k}}{r_{i+1} - r_{i}} + \dfrac{\Phi_{i,j,k}-\Phi_{i-1,j,k}}{r_{i} - r_{i-1}}\right)\hspace{10pt},\\
27- \mathcal{E}_{\varphi}^{i,j,k} &= \dfrac{1}{2 r_{i}}\left(\dfrac{\Phi_{i,j+1,k}-\Phi_{i,j,k}}{\varphi_{j+1} - \varphi_{j}} + \dfrac{\Phi_{i,j,k}-\Phi_{i,j-1,k}}{\varphi_{j} - \varphi_{j-1}}\right)\hspace{10pt},\\
28- \mathcal{E}_z^{i,j,k} &= \dfrac{1}{2}\left( \dfrac{\Phi_{i,j,k+1}-\Phi_{i,j,k}}{z_{k+1} - z_{k}} + \dfrac{\Phi_{i,j,k}-\Phi_{i,j,k-1}}{z_{k} - z_{k-1}} \right)\hspace{10pt}.
26+ \mathcal{E}_r^{i,j,k} &= - \dfrac{1}{2}\left(\dfrac{\Phi_{i+1,j,k}-\Phi_{i,j,k}}{r_{i+1} - r_{i}} + \dfrac{\Phi_{i,j,k}-\Phi_{i-1,j,k}}{r_{i} - r_{i-1}}\right)\hspace{10pt},\\
27+ \mathcal{E}_{\varphi}^{i,j,k} &= - \dfrac{1}{2 r_{i}}\left(\dfrac{\Phi_{i,j+1,k}-\Phi_{i,j,k}}{\varphi_{j+1} - \varphi_{j}} + \dfrac{\Phi_{i,j,k}-\Phi_{i,j-1,k}}{\varphi_{j} - \varphi_{j-1}}\right)\hspace{10pt},\\
28+ \mathcal{E}_z^{i,j,k} &= - \dfrac{1}{2}\left( \dfrac{\Phi_{i,j,k+1}-\Phi_{i,j,k}}{z_{k+1} - z_{k}} + \dfrac{\Phi_{i,j,k}-\Phi_{i,j,k-1}}{z_{k} - z_{k-1}} \right)\hspace{10pt}.
2929\end{aligned}
3030```
3131
0 commit comments