@@ -28,16 +28,22 @@ for N in @tN([Float64, Float32, Rational{Int}])
2828 P2 = minkowski_sum (P, H2)
2929 @test indexvector (P2) == indexvector (SPZ)
3030 # equality is not required but approximates the equivalence check
31- @test P2 == SparsePolynomialZonotope (N[6 , 8 ], zeros (N, 2 , 0 ), N[3 0 7 0 ; 0 4 0 8 ], zeros (Int, 0 , 0 ), Int[])
31+ @test P2 ==
32+ SparsePolynomialZonotope (N[6 , 8 ], zeros (N, 2 , 0 ), N[3 0 7 0 ; 0 4 0 8 ], zeros (Int, 0 , 0 ),
33+ Int[])
3234 P2 = minkowski_sum (H1, convert (SparsePolynomialZonotope, H2))
33- @test P2 == SparsePolynomialZonotope (N[6 , 8 ], zeros (N, 2 , 0 ), N[7 0 3 0 ; 0 8 0 4 ], zeros (Int, 0 , 0 ), Int[])
35+ @test P2 ==
36+ SparsePolynomialZonotope (N[6 , 8 ], zeros (N, 2 , 0 ), N[7 0 3 0 ; 0 8 0 4 ], zeros (Int, 0 , 0 ),
37+ Int[])
3438 # SSPZ + Z
3539 P = convert (SSPZ, SPZ)
3640 P2 = minkowski_sum (P, H2)
3741 # equality is not required but approximates the equivalence check
3842 @test P2 == SparsePolynomialZonotope (N[6 , 8 ], N[3 0 ; 0 4 ], N[7 0 ; 0 8 ], [1 0 ; 0 1 ], 1 : 2 )
3943 P2 = minkowski_sum (H1, convert (SparsePolynomialZonotope, H2))
40- @test P2 == SparsePolynomialZonotope (N[6 , 8 ], zeros (N, 2 , 0 ), N[7 0 3 0 ; 0 8 0 4 ], zeros (Int, 0 , 0 ), Int[])
44+ @test P2 ==
45+ SparsePolynomialZonotope (N[6 , 8 ], zeros (N, 2 , 0 ), N[7 0 3 0 ; 0 8 0 4 ], zeros (Int, 0 , 0 ),
46+ Int[])
4147end
4248
4349for N in @tN ([Float64, Float32])
0 commit comments