@@ -428,7 +428,7 @@ for N in @tN([Float64, Float32, Rational{Int}])
428428 @test isidentical (Z2, Zonotope (N[4 , 5 , 6 ], N[3 7 ; 3 7 ; 3 7 ]))
429429
430430 # distance (between point and set)
431- @test_broken distance (Z, N[0 , 0 ]) isa LazySet{N} # TODO this should work
431+ @test_broken distance (Z, N[0 , 0 ]) isa LazySet{N} # TODO implement `distance` for polytopes
432432 # @test_throws DimensionMismatch distance(Z, N[0])
433433 # @test_throws ArgumentError distance(Z, N[0]; p=N(1 // 2))
434434 # for (x, v) in ((N[1], N(0)), (N[4], N(2)))
@@ -602,10 +602,10 @@ for N in @tN([Float64, Float32, Rational{Int}])
602602 end
603603
604604 # difference
605- @test_broken difference (Z, Z3) isa LazySet{N} # TODO this should work (add more tests later)
605+ @test_broken difference (Z, Z3) isa LazySet{N} # TODO implement `difference` for polytopes (add more tests later)
606606
607607 # distance (between two sets)
608- @test_broken distance (Z, Z3) isa LazySet{N} # TODO this should work (add more tests later)
608+ @test_broken distance (Z, Z3) isa LazySet{N} # TODO implement `distance` for polytopes (add more tests later)
609609
610610 # exact_sum
611611 @test_throws DimensionMismatch exact_sum (Z, Z3)
@@ -658,8 +658,9 @@ for N in @tN([Float64, Float32, Rational{Int}])
658658 Z2 = Zonotope (N[6 + 1e-9 , 8 ], N[1 0 ; 0 1 ])
659659 @test ! isdisjoint (Z, Z2)
660660 r = LazySets. _rtol (N)
661+ @assert r > N (1e-10 ) " default tolerance changed; adapt test"
661662 LazySets. set_rtol (N, N (1e-10 ))
662- @test_broken isdisjoint (Z, Z2) # TODO this should work
663+ @test_broken isdisjoint (Z, Z2) # cannot adapt tolerance of LP solver
663664 # restore tolerance
664665 LazySets. set_rtol (N, r)
665666 end
@@ -701,8 +702,8 @@ for N in @tN([Float64, Float32, Rational{Int}])
701702
702703 # linear_combination
703704 @test_throws DimensionMismatch linear_combination (Z, Z3)
704- @test_broken linear_combination (Z, Xnc) # TODO implement `linear_combination` for non-convex sets
705- @test_broken linear_combination (Xnc, Z)
705+ @test_broken linear_combination (Z, Xnc) isa LazySet{N} # TODO implement `linear_combination` for non-convex sets
706+ @test_broken linear_combination (Xnc, Z) isa LazySet{N}
706707 for X in (linear_combination (Z, Z), linear_combination (Z, P), linear_combination (P, Z))
707708 @test X isa LazySet{N} && isequivalent (X, Z)
708709 end
0 commit comments