@@ -432,7 +432,7 @@ for N in @tN([Float64, Float32, Rational{Int}])
432432 @test isidentical (Z2, Zonotope (N[4 , 5 , 6 ], N[3 7 ; 3 7 ; 3 7 ]))
433433
434434 # distance (between point and set)
435- @test_broken distance (Z, N[0 , 0 ]) isa LazySet{N} # TODO this should work
435+ @test_broken distance (Z, N[0 , 0 ]) isa LazySet{N} # TODO implement `distance` for polytopes
436436 # @test_throws DimensionMismatch distance(Z, N[0])
437437 # @test_throws ArgumentError distance(Z, N[0]; p=N(1 // 2))
438438 # for (x, v) in ((N[1], N(0)), (N[4], N(2)))
@@ -606,10 +606,10 @@ for N in @tN([Float64, Float32, Rational{Int}])
606606 end
607607
608608 # difference
609- @test_broken difference (Z, Z3) isa LazySet{N} # TODO this should work (add more tests later)
609+ @test_broken difference (Z, Z3) isa LazySet{N} # TODO implement `difference` for polytopes (add more tests later)
610610
611611 # distance (between two sets)
612- @test_broken distance (Z, Z3) isa LazySet{N} # TODO this should work (add more tests later)
612+ @test_broken distance (Z, Z3) isa LazySet{N} # TODO implement `distance` for polytopes (add more tests later)
613613
614614 # exact_sum
615615 @test_throws DimensionMismatch exact_sum (Z, Z3)
@@ -662,8 +662,9 @@ for N in @tN([Float64, Float32, Rational{Int}])
662662 Z2 = Zonotope (N[6 + 1e-9 , 8 ], N[1 0 ; 0 1 ])
663663 @test ! isdisjoint (Z, Z2)
664664 r = LazySets. _rtol (N)
665+ @assert r > N (1e-10 ) " default tolerance changed; adapt test"
665666 LazySets. set_rtol (N, N (1e-10 ))
666- @test_broken isdisjoint (Z, Z2) # TODO this should work
667+ @test_broken isdisjoint (Z, Z2) # cannot adapt tolerance of LP solver
667668 # restore tolerance
668669 LazySets. set_rtol (N, r)
669670 end
@@ -705,8 +706,8 @@ for N in @tN([Float64, Float32, Rational{Int}])
705706
706707 # linear_combination
707708 @test_throws DimensionMismatch linear_combination (Z, Z3)
708- @test_broken linear_combination (Z, Xnc) # TODO implement `linear_combination` for non-convex sets
709- @test_broken linear_combination (Xnc, Z)
709+ @test_broken linear_combination (Z, Xnc) isa LazySet{N} # TODO implement `linear_combination` for non-convex sets
710+ @test_broken linear_combination (Xnc, Z) isa LazySet{N}
710711 for X in (linear_combination (Z, Z), linear_combination (Z, P), linear_combination (P, Z))
711712 @test X isa LazySet{N} && isequivalent (X, Z)
712713 end
0 commit comments