|
50 | 50 | ##
|
51 | 51 |
|
52 | 52 |
|
53 |
| -## |
54 |
| -@testset "using RoME; FiniteDiff.jacobian of SpecialEuclidean(2) factor" begin |
55 |
| -## |
| 53 | +# ## |
| 54 | +# @testset "using RoME; FiniteDiff.jacobian of SpecialEuclidean(2) factor" begin |
| 55 | +# ## |
56 | 56 |
|
57 |
| -fg = LocalDFG(; |
58 |
| - solverParams = SolverParams(; |
59 |
| - graphinit=false |
60 |
| - ) |
61 |
| -) |
| 57 | +# fg = LocalDFG(; |
| 58 | +# solverParams = SolverParams(; |
| 59 | +# graphinit=false |
| 60 | +# ) |
| 61 | +# ) |
62 | 62 |
|
63 |
| -addVariable!.(fg, [:x0; :x1], Pose2) |
64 |
| -f = addFactor!(fg, [:x0; :x1], Pose2Pose2(MvNormal([10;0;pi/2],[1 0 0; 0 1 0; 0 0 1.0]))) |
| 63 | +# addVariable!.(fg, [:x0; :x1], Pose2) |
| 64 | +# f = addFactor!(fg, [:x0; :x1], Pose2Pose2(MvNormal([10;0;pi/2],[1 0 0; 0 1 0; 0 0 1.0]))) |
65 | 65 |
|
66 |
| -p1 = [ArrayPartition([10; 0.0], [0 1; -1 0.0]) for _ in 1:1] |
| 66 | +# p1 = [ArrayPartition([10; 0.0], [0 1; -1 0.0]) for _ in 1:1] |
67 | 67 |
|
68 |
| -setVal!(fg, :x1, p1, solveKey=:parametric) |
| 68 | +# setVal!(fg, :x1, p1, solveKey=:parametric) |
69 | 69 |
|
70 |
| -J = IIF.factorJacobian(fg, :x0x1f1) |
| 70 | +# J = IIF.factorJacobian(fg, :x0x1f1) |
71 | 71 |
|
72 |
| -@test isapprox( Jx0, J[1:1,1:2]; atol=1e-8) |
73 |
| -@test_broken isapprox( Jx1, J[1:1,3:4]; atol=1e-8) |
| 72 | +# @test isapprox( Jx0, J[1:1,1:2]; atol=1e-8) |
| 73 | +# @test_broken isapprox( Jx1, J[1:1,3:4]; atol=1e-8) |
74 | 74 |
|
75 | 75 |
|
76 |
| -## |
77 |
| -end |
78 |
| -## |
| 76 | +# ## |
| 77 | +# end |
| 78 | +# ## |
79 | 79 |
|
80 | 80 |
|
81 | 81 | ##
|
|
0 commit comments