@@ -7,7 +7,7 @@ export Circular, Circle
77Base. convert (:: Type{<:Tuple} , :: InstanceType{Manifolds.Euclidean{Tuple{N}, ℝ}} ) where N = tuple ([:Euclid for i in 1 : N]. .. )
88Base. convert (:: Type{<:Tuple} , :: InstanceType{Manifolds.Circle{ℝ}} ) = (:Circular ,)
99
10- # Base.convert(::Type{<:Tuple}, mani::MB.AbstractManifold) = getManifolds(mani)
10+
1111
1212
1313# # Euclid 1
@@ -22,10 +22,6 @@ DevNotes
2222"""
2323@defVariable ContinuousScalar TranslationGroup (1 ) [0.0 ;]
2424
25- # Base.convert(::Type{<:ManifoldsBase.AbstractManifold}, ::InstanceType{ContinuousScalar}) = Manifolds.Euclidean(1)
26-
27-
28- # # Euclid N
2925
3026
3127"""
@@ -37,10 +33,9 @@ struct ContinuousEuclid{N} <: InferenceVariable end
3733ContinuousEuclid (x:: Int ) = ContinuousEuclid {x} ()
3834
3935# not sure if these overloads are necessary since DFG 775?
40- DFG. getManifold (:: InstanceType{ContinuousEuclid{N}} ) where N = TranslationGroup (N)
41- # DFG.getManifold(::ContinuousEuclid{N}) where N = TranslationGroup(N)
36+ DFG. getManifold (:: InstanceType{ContinuousEuclid{N}} ) where N = TranslationGroup (N)
4237DFG. getDimension (val:: InstanceType{ContinuousEuclid{N}} ) where N = manifold_dimension (getManifold (val))
43- # DFG.getDimension(val::ContinuousEuclid{N}) where N = manifold_dimension(getManifold(val))
38+
4439
4540DFG. getPointType (:: Type{ContinuousEuclid{N}} ) where N = Vector{Float64}
4641DFG. getPointIdentity (M_:: Type{ContinuousEuclid{N}} ) where N = zeros (N) # identity_element(getManifold(M_), zeros(N))
@@ -60,8 +55,6 @@ Circular is a `Manifolds.Circle{ℝ}` mechanization of one rotation, with `theta
6055@defVariable Circular Circle () [0.0 ;]
6156
6257
63- # Base.convert(::Type{<:ManifoldsBase.AbstractManifold}, ::InstanceType{Circular}) = Manifolds.Circle()
64-
6558
6659
6760#
0 commit comments