|
| 1 | +include(joinpath(LOOPVECBENCHDIR, "looptests.jl")) |
| 2 | +include(joinpath(LOOPVECBENCHDIR, "loadsharedlibs.jl")) |
| 3 | + |
| 4 | +using PrettyTables, BenchmarkTools |
| 5 | +struct SizedResults{V <: AbstractVector} <: AbstractMatrix{String} |
| 6 | + results::Matrix{Float64} |
| 7 | + sizes::V |
| 8 | +end |
| 9 | +function Base.size(sr::SizedResults) |
| 10 | + M, N = size(sr.results) |
| 11 | + N, M+1 |
| 12 | +end |
| 13 | +struct BenchmarkResult{V} |
| 14 | + tests::Vector{String} |
| 15 | + sizedresults::SizedResults{V} |
| 16 | +end |
| 17 | +function BenchmarkResult(tests, sizes) |
| 18 | + ntests = length(tests); nsizes = length(sizes) |
| 19 | + BenchmarkResult( |
| 20 | + append!(["Size"], tests), |
| 21 | + SizedResults(Matrix{Float64}(undef, ntests, nsizes), sizes) |
| 22 | + ) |
| 23 | +end |
| 24 | +function Base.getindex(br::SizedResults, row, col) |
| 25 | + col == 1 ? string(br.sizes[row]) : string(br.results[col - 1, row]) |
| 26 | +end |
| 27 | +Base.setindex!(br::BenchmarkResult, v, i...) = br.sizedresults.results[i...] = v |
| 28 | + |
| 29 | +const HIGHLIGHT_BEST = Highlighter( |
| 30 | + (br,i,j) -> (j > 1 && maximum(@view(br.results[:, i])) == br.results[j-1,i]), |
| 31 | + foreground = :green |
| 32 | +); |
| 33 | +function Base.show(io::IO, br::BenchmarkResult) |
| 34 | + pretty_table( |
| 35 | + io, br.sizedresults, br.tests, crop = :none, highlighters = (HIGHLIGHT_BEST,) |
| 36 | + ) |
| 37 | +end |
| 38 | + |
| 39 | +tothreetuple(i::Int) = (i,i,i) |
| 40 | +tothreetuple(i::NTuple{3,Int}) = i |
| 41 | +function benchmark_gemm(sizes) |
| 42 | + tests = [BLAS.vendor() === :mkl ? "IntelMKL" : "OpenBLAS", "Julia", "Clang-Polly", "GFort-loops", "GFort-intrinsic", "LoopVectorization"] |
| 43 | + br = BenchmarkResult(tests, sizes) |
| 44 | + for (i,s) ∈ enumerate(sizes) |
| 45 | + M, K, N = tothreetuple(s) |
| 46 | + C = Matrix{Float64}(undef, M, N) |
| 47 | + A = rand(M, K) |
| 48 | + B = rand(K, N) |
| 49 | + n_gflop = M*K*N*2e-9 |
| 50 | + br[1,i] = n_gflop / @belapsed mul!($C, $A, $B) |
| 51 | + Cblas = copy(C) |
| 52 | + br[2,i] = n_gflop / @belapsed jgemm_nkm!($C, $A, $B) |
| 53 | + @assert C ≈ Cblas "Julia gemm wrong?" |
| 54 | + br[3,i] = n_gflop / @belapsed cgemm_nkm!($C, $A, $B) |
| 55 | + @assert C ≈ Cblas "Polly gemm wrong?" |
| 56 | + br[4,i] = n_gflop / @belapsed fgemm_nkm!($C, $A, $B) |
| 57 | + @assert C ≈ Cblas "Fort gemm wrong?" |
| 58 | + br[5,i] = n_gflop / @belapsed fgemm_builtin!($C, $A, $B) |
| 59 | + @assert C ≈ Cblas "Fort intrinsic gemm wrong?" |
| 60 | + br[6,i] = n_gflop / @belapsed gemmavx!($C, $A, $B) |
| 61 | + @assert C ≈ Cblas "LoopVec gemm wrong?" |
| 62 | + # if i % 10 == 0 |
| 63 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 64 | + # @show percent_complete |
| 65 | + # end |
| 66 | + end |
| 67 | + br |
| 68 | +end |
| 69 | +function benchmark_AtmulB(sizes) |
| 70 | + tests = [BLAS.vendor() === :mkl ? "IntelMKL" : "OpenBLAS", "Julia", "Clang-Polly", "GFort-loops", "GFort-intrinsic", "LoopVectorization"] |
| 71 | + br = BenchmarkResult(tests, sizes) |
| 72 | + for (i,s) ∈ enumerate(sizes) |
| 73 | + M, K, N = tothreetuple(s) |
| 74 | + C = Matrix{Float64}(undef, M, N) |
| 75 | + At = rand(K, M) |
| 76 | + B = rand(K, N) |
| 77 | + n_gflop = M*K*N*2e-9 |
| 78 | + br[1,i] = n_gflop / @belapsed mul!($C, $At', $B) |
| 79 | + Cblas = copy(C) |
| 80 | + br[2,i] = n_gflop / @belapsed jAtmulB!($C, $At, $B) |
| 81 | + @assert C ≈ Cblas "Julia gemm wrong?" |
| 82 | + br[3,i] = n_gflop / @belapsed cAtmulB!($C, $At, $B) |
| 83 | + @assert C ≈ Cblas "Polly gemm wrong?" |
| 84 | + br[4,i] = n_gflop / @belapsed fAtmulB!($C, $At, $B) |
| 85 | + @assert C ≈ Cblas "Fort gemm wrong?" |
| 86 | + br[5,i] = n_gflop / @belapsed fAtmulB_builtin!($C, $At, $B) |
| 87 | + @assert C ≈ Cblas "Fort intrinsic gemm wrong?" |
| 88 | + br[6,i] = n_gflop / @belapsed jAtmulBavx!($C, $At, $B) |
| 89 | + @assert C ≈ Cblas "LoopVec gemm wrong?" |
| 90 | + # if i % 10 == 0 |
| 91 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 92 | + # @show percent_complete |
| 93 | + # end |
| 94 | + end |
| 95 | + br |
| 96 | +end |
| 97 | + |
| 98 | +function benchmark_dot(sizes) |
| 99 | + tests = [BLAS.vendor() === :mkl ? "IntelMKL" : "OpenBLAS", "Julia", "Clang-Polly", "GFort-loops", "LoopVectorization"] |
| 100 | + br = BenchmarkResult(tests, sizes) |
| 101 | + for (i,s) ∈ enumerate(sizes) |
| 102 | + a = rand(s); b = rand(s); |
| 103 | + n_gflop = s * 2e-9 |
| 104 | + br[1,i] = n_gflop / @belapsed dot($a, $b) |
| 105 | + dotblas = dot(a, b) |
| 106 | + br[2,i] = n_gflop / @belapsed jdot($a, $b) |
| 107 | + @assert jdot(a,b) ≈ dotblas "Julia dot wrong?" |
| 108 | + br[3,i] = n_gflop / @belapsed cdot($a, $b) |
| 109 | + @assert cdot(a,b) ≈ dotblas "Polly dot wrong?" |
| 110 | + br[4,i] = n_gflop / @belapsed fdot($a, $b) |
| 111 | + @assert fdot(a,b) ≈ dotblas "Fort dot wrong?" |
| 112 | + br[5,i] = n_gflop / @belapsed jdotavx($a, $b) |
| 113 | + @assert jdotavx(a,b) ≈ dotblas "LoopVec dot wrong?" |
| 114 | + # if i % 10 == 0 |
| 115 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 116 | + # @show percent_complete |
| 117 | + # end |
| 118 | + end |
| 119 | + br |
| 120 | +end |
| 121 | +function benchmark_selfdot(sizes) |
| 122 | + tests = [BLAS.vendor() === :mkl ? "IntelMKL" : "OpenBLAS", "Julia", "Clang-Polly", "GFort-loops", "LoopVectorization"] |
| 123 | + br = BenchmarkResult(tests, sizes) |
| 124 | + for (i,s) ∈ enumerate(sizes) |
| 125 | + a = rand(s); |
| 126 | + n_gflop = s * 2e-9 |
| 127 | + br[1,i] = n_gflop / @belapsed dot($a, $a) |
| 128 | + dotblas = dot(a, a) |
| 129 | + br[2,i] = n_gflop / @belapsed jselfdot($a) |
| 130 | + @assert jselfdot(a) ≈ dotblas "Julia dot wrong?" |
| 131 | + br[3,i] = n_gflop / @belapsed cselfdot($a) |
| 132 | + @assert cselfdot(a) ≈ dotblas "Polly dot wrong?" |
| 133 | + br[4,i] = n_gflop / @belapsed fselfdot($a) |
| 134 | + @assert fselfdot(a) ≈ dotblas "Fort dot wrong?" |
| 135 | + br[5,i] = n_gflop / @belapsed jselfdotavx($a) |
| 136 | + @assert jselfdotavx(a) ≈ dotblas "LoopVec dot wrong?" |
| 137 | + # if i % 10 == 0 |
| 138 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 139 | + # @show percent_complete |
| 140 | + # end |
| 141 | + end |
| 142 | + br |
| 143 | +end |
| 144 | +totwotuple(i::Int) = (i,i) |
| 145 | +totwotuple(i::Tuple{Int,Int}) = i |
| 146 | +function benchmark_gemv(sizes) |
| 147 | + tests = [BLAS.vendor() === :mkl ? "IntelMKL" : "OpenBLAS", "Julia", "Clang-Polly", "GFort-loops", "LoopVectorization"] |
| 148 | + br = BenchmarkResult(tests, sizes) |
| 149 | + for (i,s) ∈ enumerate(sizes) |
| 150 | + M, N = totwotuple(s) |
| 151 | + x = Vector{Float64}(undef, M); A = rand(M, N); y = rand(N); |
| 152 | + n_gflop = M*N * 2e-9 |
| 153 | + br[1,i] = n_gflop / @belapsed mul!($x, $A, $y) |
| 154 | + xblas = copy(x) |
| 155 | + br[2,i] = n_gflop / @belapsed jgemv!($x, $A, $y) |
| 156 | + @assert x ≈ xblas "Julia wrong?" |
| 157 | + br[3,i] = n_gflop / @belapsed cgemv!($x, $A, $y) |
| 158 | + @assert x ≈ xblas "Polly wrong?" |
| 159 | + br[4,i] = n_gflop / @belapsed fgemv!($x, $A, $y) |
| 160 | + @assert x ≈ xblas "Fort wrong?" |
| 161 | + br[5,i] = n_gflop / @belapsed jgemvavx!($x, $A, $y) |
| 162 | + @assert x ≈ xblas "LoopVec wrong?" |
| 163 | + # if i % 10 == 0 |
| 164 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 165 | + # @show percent_complete |
| 166 | + # end |
| 167 | + end |
| 168 | + br |
| 169 | +end |
| 170 | +function benchmark_dot3(sizes) |
| 171 | + tests = [BLAS.vendor() === :mkl ? "IntelMKL" : "OpenBLAS", "Julia", "Clang-Polly", "GFort-loops", "LoopVectorization"] |
| 172 | + br = BenchmarkResult(tests, sizes) |
| 173 | + for (i,s) ∈ enumerate(sizes) |
| 174 | + M, N = totwotuple(s) |
| 175 | + x = rand(M); A = rand(M, N); y = rand(N); |
| 176 | + n_gflop = M*N * 3e-9 |
| 177 | + br[1,i] = n_gflop / @belapsed dot($x, $A, $y) |
| 178 | + dotblas = dot(x, A, y) |
| 179 | + br[2,i] = n_gflop / @belapsed jdot3($x, $A, $y) |
| 180 | + @assert jdot3(x, A, y) ≈ dotblas "Julia dot wrong?" |
| 181 | + br[3,i] = n_gflop / @belapsed cdot3($x, $A, $y) |
| 182 | + @assert cdot3(x, A, y) ≈ dotblas "Polly dot wrong?" |
| 183 | + br[4,i] = n_gflop / @belapsed fdot3($x, $A, $y) |
| 184 | + @assert fdot3(x, A, y) ≈ dotblas "Fort dot wrong?" |
| 185 | + br[5,i] = n_gflop / @belapsed jdot3avx($x, $A, $y) |
| 186 | + @assert jdot3avx(x, A, y) ≈ dotblas "LoopVec dot wrong?" |
| 187 | + # if i % 10 == 0 |
| 188 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 189 | + # @show percent_complete |
| 190 | + # end |
| 191 | + end |
| 192 | + br |
| 193 | +end |
| 194 | +function sse!(Xβ, y, X, β) |
| 195 | + mul!(copyto!(Xβ, y), X, β, 1.0, -1.0) |
| 196 | + dot(Xβ, Xβ) |
| 197 | +end |
| 198 | +function benchmark_sse(sizes) |
| 199 | + tests = [BLAS.vendor() === :mkl ? "IntelMKL" : "OpenBLAS", "Julia", "Clang-Polly", "GFort-loops", "LoopVectorization"] |
| 200 | + br = BenchmarkResult(tests, sizes) |
| 201 | + for (i,s) ∈ enumerate(sizes) |
| 202 | + N, P = totwotuple(s) |
| 203 | + y = rand(N); β = rand(P) |
| 204 | + X = randn(N, P) |
| 205 | + Xβ = similar(y) |
| 206 | + n_gflop = 2e-9*(P*N + 2N) |
| 207 | + br[1,i] = n_gflop / @belapsed sse!($Xβ, $y, $X, $β) |
| 208 | + lpblas = sse!(Xβ, y, X, β) |
| 209 | + br[2,i] = n_gflop / @belapsed jOLSlp($y, $X, $β) |
| 210 | + @assert jOLSlp(y, X, β) ≈ lpblas "Julia wrong?" |
| 211 | + br[3,i] = n_gflop / @belapsed cOLSlp($y, $X, $β) |
| 212 | + @assert cOLSlp(y, X, β) ≈ lpblas "Polly wrong?" |
| 213 | + br[4,i] = n_gflop / @belapsed fOLSlp($y, $X, $β) |
| 214 | + @assert fOLSlp(y, X, β) ≈ lpblas "Fort wrong?" |
| 215 | + br[5,i] = n_gflop / @belapsed jOLSlp_avx($y, $X, $β) |
| 216 | + @assert jOLSlp_avx(y, X, β) ≈ lpblas "LoopVec wrong?" |
| 217 | + # if i % 10 == 0 |
| 218 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 219 | + # @show percent_complete |
| 220 | + # end |
| 221 | + end |
| 222 | + br |
| 223 | +end |
| 224 | + |
| 225 | +function benchmark_exp(sizes) |
| 226 | + tests = ["Julia", "Clang-Polly", "GFort-loops", "LoopVectorization"] |
| 227 | + br = BenchmarkResult(tests, sizes) |
| 228 | + for (i,s) ∈ enumerate(sizes) |
| 229 | + a = rand(s); b = similar(a) |
| 230 | + n_gflop = 1e-9*s # not really gflops |
| 231 | + br[1,i] = n_gflop / @belapsed @. $b = exp($a) |
| 232 | + baseb = copy(b) |
| 233 | + br[2,i] = n_gflop / @belapsed cvexp!($b, $a) |
| 234 | + @assert b ≈ baseb "Clang wrong?" |
| 235 | + br[3,i] = n_gflop / @belapsed fvexp!($b, $a) |
| 236 | + @assert b ≈ baseb "Fort wrong?" |
| 237 | + br[4,i] = n_gflop / @belapsed @avx @. $b = exp($a) |
| 238 | + @assert b ≈ baseb "LoopVec wrong?" |
| 239 | + # if i % 10 == 0 |
| 240 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 241 | + # @show percent_complete |
| 242 | + # end |
| 243 | + end |
| 244 | + br |
| 245 | +end |
| 246 | + |
| 247 | +function benchmark_aplusBc(sizes) |
| 248 | + tests = ["Julia", "Clang-Polly", "GFort-loops", "LoopVectorization"] |
| 249 | + br = BenchmarkResult(tests, sizes) |
| 250 | + for (i,s) ∈ enumerate(sizes) |
| 251 | + M, N = totwotuple(s) |
| 252 | + a = rand(M); B = rand(M,N); c = rand(N); |
| 253 | + c′ = c'; D = similar(B) |
| 254 | + n_gflop = 2e-9 * M*N |
| 255 | + br[1,i] = n_gflop / @belapsed @. $D = $a + $B * $c′ |
| 256 | + Dcopy = copy(D) |
| 257 | + br[2,i] = n_gflop / @belapsed caplusBc!($D, $a, $B, $c) |
| 258 | + @assert D ≈ Dcopy "Polly wrong?" |
| 259 | + br[3,i] = n_gflop / @belapsed faplusBc!($D, $a, $B, $c) |
| 260 | + @assert D ≈ Dcopy "Fort wrong?" |
| 261 | + br[4,i] = n_gflop / @belapsed @avx @. $D = $a + $B * $c′ |
| 262 | + @assert D ≈ Dcopy "LoopVec wrong?" |
| 263 | + # if i % 10 == 0 |
| 264 | + # percent_complete = round(100i/ length(sizes), sigdigits = 4) |
| 265 | + # @show percent_complete |
| 266 | + # end |
| 267 | + end |
| 268 | + br |
| 269 | +end |
| 270 | + |
0 commit comments