@@ -76,12 +76,12 @@ function jgemm!(𝐂, 𝐀ᵀ::Adjoint, 𝐁ᵀ::Adjoint)
76
76
end
77
77
end
78
78
gemmavx! (𝐂, 𝐀, 𝐁) = @turbo for m ∈ indices ((𝐀, 𝐂), 1 ), n ∈ indices ((𝐁, 𝐂), 2 )
79
- 𝐂ₘₙ = zero (eltype (𝐂))
80
- for k ∈ indices ((𝐀, 𝐁), (2 , 1 ))
81
- 𝐂ₘₙ += 𝐀[m, k] * 𝐁[k, n]
82
- end
83
- 𝐂[m, n] = 𝐂ₘₙ
79
+ 𝐂ₘₙ = zero (eltype (𝐂))
80
+ for k ∈ indices ((𝐀, 𝐁), (2 , 1 ))
81
+ 𝐂ₘₙ += 𝐀[m, k] * 𝐁[k, n]
84
82
end
83
+ 𝐂[m, n] = 𝐂ₘₙ
84
+ end
85
85
function gemmavx! (
86
86
Cc:: AbstractMatrix{Complex{T}} ,
87
87
Ac:: AbstractMatrix{Complex{T}} ,
@@ -102,12 +102,12 @@ function gemmavx!(
102
102
end
103
103
end
104
104
gemmavxt! (𝐂, 𝐀, 𝐁) = @tturbo for m ∈ indices ((𝐀, 𝐂), 1 ), n ∈ indices ((𝐁, 𝐂), 2 )
105
- 𝐂ₘₙ = zero (eltype (𝐂))
106
- for k ∈ indices ((𝐀, 𝐁), (2 , 1 ))
107
- 𝐂ₘₙ += 𝐀[m, k] * 𝐁[k, n]
108
- end
109
- 𝐂[m, n] = 𝐂ₘₙ
105
+ 𝐂ₘₙ = zero (eltype (𝐂))
106
+ for k ∈ indices ((𝐀, 𝐁), (2 , 1 ))
107
+ 𝐂ₘₙ += 𝐀[m, k] * 𝐁[k, n]
110
108
end
109
+ 𝐂[m, n] = 𝐂ₘₙ
110
+ end
111
111
function gemmavxt! (
112
112
Cc:: AbstractMatrix{Complex{T}} ,
113
113
Ac:: AbstractMatrix{Complex{T}} ,
@@ -204,11 +204,11 @@ function jdot3avx(x, A, y)
204
204
s
205
205
end
206
206
jvexp! (b, a) = @inbounds for i ∈ eachindex (a)
207
- b[i] = exp (a[i])
208
- end
207
+ b[i] = exp (a[i])
208
+ end
209
209
jvexpavx! (b, a) = @turbo for i ∈ eachindex (a)
210
- b[i] = exp (a[i])
211
- end
210
+ b[i] = exp (a[i])
211
+ end
212
212
function jsvexp (a)
213
213
s = zero (eltype (a))
214
214
@inbounds for i ∈ eachindex (a)
@@ -242,12 +242,12 @@ function jgemv!(𝐲, 𝐀ᵀ::Adjoint, 𝐱)
242
242
end
243
243
end
244
244
jgemvavx! (𝐲, 𝐀, 𝐱) = @turbo for i ∈ eachindex (𝐲)
245
- 𝐲ᵢ = zero (eltype (𝐲))
246
- for j ∈ eachindex (𝐱)
247
- 𝐲ᵢ += 𝐀[i, j] * 𝐱[j]
248
- end
249
- 𝐲[i] = 𝐲ᵢ
245
+ 𝐲ᵢ = zero (eltype (𝐲))
246
+ for j ∈ eachindex (𝐱)
247
+ 𝐲ᵢ += 𝐀[i, j] * 𝐱[j]
250
248
end
249
+ 𝐲[i] = 𝐲ᵢ
250
+ end
251
251
function jvar! (𝐬², 𝐀, x̄)
252
252
@. s² = zero (eltype (𝐬²))
253
253
@inbounds @fastmath for i ∈ 1 : size (𝐀, 2 )
@@ -258,14 +258,14 @@ function jvar!(𝐬², 𝐀, x̄)
258
258
end
259
259
end
260
260
jvaravx! (𝐬², 𝐀, x̄) = @turbo for j ∈ eachindex (𝐬²)
261
- 𝐬²ⱼ = zero (eltype (𝐬²))
262
- x̄ⱼ = x̄[j]
263
- for i ∈ 1 : size (𝐀, 2 )
264
- δ = 𝐀[j, i] - x̄ⱼ
265
- 𝐬²ⱼ += δ * δ
266
- end
267
- 𝐬²[j] = 𝐬²ⱼ
261
+ 𝐬²ⱼ = zero (eltype (𝐬²))
262
+ x̄ⱼ = x̄[j]
263
+ for i ∈ 1 : size (𝐀, 2 )
264
+ δ = 𝐀[j, i] - x̄ⱼ
265
+ 𝐬²ⱼ += δ * δ
268
266
end
267
+ 𝐬²[j] = 𝐬²ⱼ
268
+ end
269
269
japlucBc! (D, a, B, c) = @. D = a + B * c' ;
270
270
japlucBcavx! (D, a, B, c) = @turbo @. D = a + B * c' ;
271
271
0 commit comments