|
1 | | -struct EnzymeADGradient <: ADNLPModels.ADBackend end |
| 1 | +struct EnzymeReverseADJacobian <: ADBackend end |
| 2 | +struct EnzymeReverseADHessian <: ADBackend end |
2 | 3 |
|
3 | | -function EnzymeADGradient( |
| 4 | +struct EnzymeReverseADGradient <: ADNLPModels.ADBackend end |
| 5 | + |
| 6 | +function EnzymeReverseADGradient( |
4 | 7 | nvar::Integer, |
5 | 8 | f, |
6 | 9 | ncon::Integer = 0, |
7 | 10 | c::Function = (args...) -> []; |
8 | 11 | x0::AbstractVector = rand(nvar), |
9 | 12 | kwargs..., |
10 | 13 | ) |
11 | | - return EnzymeADGradient() |
| 14 | + return EnzymeReverseADGradient() |
| 15 | +end |
| 16 | + |
| 17 | +function ADNLPModels.gradient!(::EnzymeReverseADGradient, g, f, x) |
| 18 | + Enzyme.autodiff(Enzyme.Reverse, f, Enzyme.Duplicated(x, g)) # gradient!(Reverse, g, f, x) |
| 19 | + return g |
| 20 | +end |
| 21 | + |
| 22 | +function EnzymeReverseADJacobian( |
| 23 | + nvar::Integer, |
| 24 | + f, |
| 25 | + ncon::Integer = 0, |
| 26 | + c::Function = (args...) -> []; |
| 27 | + kwargs..., |
| 28 | +) |
| 29 | + return EnzymeReverseADJacobian() |
| 30 | +end |
| 31 | + |
| 32 | +jacobian(::EnzymeReverseADJacobian, f, x) = Enzyme.jacobian(Enzyme.Reverse, f, x) |
| 33 | + |
| 34 | +function EnzymeReverseADHessian( |
| 35 | + nvar::Integer, |
| 36 | + |
| 37 | + f, |
| 38 | + ncon::Integer = 0, |
| 39 | + c::Function = (args...) -> []; |
| 40 | + kwargs..., |
| 41 | +) |
| 42 | + @assert nvar > 0 |
| 43 | + nnzh = nvar * (nvar + 1) / 2 |
| 44 | + return EnzymeReverseADHessian() |
12 | 45 | end |
13 | 46 |
|
14 | | -@init begin |
15 | | - @require Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" begin |
16 | | - function ADNLPModels.gradient!(::EnzymeADGradient, g, f, x) |
17 | | - Enzyme.autodiff(Enzyme.Reverse, f, Enzyme.Duplicated(x, g)) # gradient!(Reverse, g, f, x) |
18 | | - return g |
19 | | - end |
| 47 | +function hessian(::EnzymeReverseADHessian, f, x) |
| 48 | + seed = similar(x) |
| 49 | + hess = zeros(eltype(x), length(x), length(x)) |
| 50 | + fill!(seed, zero(x)) |
| 51 | + for i in 1:length(x) |
| 52 | + seed[i] = one(x) |
| 53 | + Enzyme.hvp!(view(hess, i, :), f, x, seed) |
| 54 | + seed[i] = zero(x) |
20 | 55 | end |
| 56 | + return hess |
| 57 | +end |
| 58 | + |
| 59 | +struct EnzymeReverseADJprod <: InPlaceADBackend |
| 60 | + x::Vector{Float64} |
| 61 | +end |
| 62 | + |
| 63 | +function EnzymeReverseADJprod( |
| 64 | + nvar::Integer, |
| 65 | + f, |
| 66 | + ncon::Integer = 0, |
| 67 | + c::Function = (args...) -> []; |
| 68 | + kwargs..., |
| 69 | +) |
| 70 | + x = zeros(nvar) |
| 71 | + return EnzymeReverseADJprod(x) |
| 72 | +end |
| 73 | + |
| 74 | +function Jprod!(b::EnzymeReverseADJprod, Jv, c!, x, v, ::Val) |
| 75 | + Enzyme.autodiff(Enzyme.Forward, c!, Duplicated(b.x, Jv), Enzyme.Duplicated(x, v)) |
| 76 | + return Jv |
| 77 | +end |
| 78 | + |
| 79 | +struct EnzymeReverseADJtprod <: InPlaceADBackend |
| 80 | + x::Vector{Float64} |
| 81 | +end |
| 82 | + |
| 83 | +function EnzymeReverseADJtprod( |
| 84 | + nvar::Integer, |
| 85 | + f, |
| 86 | + ncon::Integer = 0, |
| 87 | + c::Function = (args...) -> []; |
| 88 | + kwargs..., |
| 89 | +) |
| 90 | + x = zeros(nvar) |
| 91 | + return EnzymeReverseADJtprod(x) |
| 92 | +end |
| 93 | + |
| 94 | +function Jtvprod!(b::EnzymeReverseADJtprod, Jtv, c!, x, v, ::Val) |
| 95 | + Enzyme.autodiff(Enzyme.Reverse, c!, Duplicated(b.x, Jtv), Enzyme.Duplicated(x, v)) |
| 96 | + return Jtv |
| 97 | +end |
| 98 | + |
| 99 | +struct EnzymeReverseADHprod <: InPlaceADBackend |
| 100 | + grad::Vector{Float64} |
| 101 | +end |
| 102 | + |
| 103 | +function EnzymeReverseADHvprod( |
| 104 | + nvar::Integer, |
| 105 | + f, |
| 106 | + ncon::Integer = 0, |
| 107 | + c!::Function = (args...) -> []; |
| 108 | + x0::AbstractVector{T} = rand(nvar), |
| 109 | + kwargs..., |
| 110 | +) where {T} |
| 111 | + grad = zeros(nvar) |
| 112 | + return EnzymeReverseADHprod(grad) |
| 113 | +end |
| 114 | + |
| 115 | +function Hvprod!(b::EnzymeReverseADHvprod, Hv, x, v, f, args...) |
| 116 | + # What to do with args? |
| 117 | + Enzyme.autodiff( |
| 118 | + Forward, |
| 119 | + gradient!, |
| 120 | + Const(Reverse), |
| 121 | + DuplicatedNoNeed(b.grad, Hv), |
| 122 | + Const(f), |
| 123 | + Duplicated(x, v), |
| 124 | + ) |
| 125 | + return Hv |
| 126 | +end |
| 127 | + |
| 128 | +function Hvprod!( |
| 129 | + b::EnzymeReverseADHvprod, |
| 130 | + Hv, |
| 131 | + x::AbstractVector{T}, |
| 132 | + v, |
| 133 | + ℓ, |
| 134 | + ::Val{:lag}, |
| 135 | + y, |
| 136 | + obj_weight::Real = one(T), |
| 137 | +) |
| 138 | + Enzyme.autodiff( |
| 139 | + Forward, |
| 140 | + gradient!, |
| 141 | + Const(Reverse), |
| 142 | + DuplicatedNoNeed(b.grad, Hv), |
| 143 | + Const(ℓ), |
| 144 | + Duplicated(x, v), |
| 145 | + Const(y), |
| 146 | + ) |
| 147 | + |
| 148 | + return Hv |
| 149 | +end |
| 150 | + |
| 151 | +function Hvprod!( |
| 152 | + b::EnzymeReverseADHvprod{T, S, Tagf}, |
| 153 | + Hv, |
| 154 | + x, |
| 155 | + v, |
| 156 | + f, |
| 157 | + ::Val{:obj}, |
| 158 | + obj_weight::Real = one(T), |
| 159 | +) |
| 160 | + Enzyme.autodiff( |
| 161 | + Forward, |
| 162 | + gradient!, |
| 163 | + Const(Reverse), |
| 164 | + DuplicatedNoNeed(b.grad, Hv), |
| 165 | + Const(f), |
| 166 | + Duplicated(x, v), |
| 167 | + Const(y), |
| 168 | + ) |
| 169 | + return Hv |
21 | 170 | end |
0 commit comments