55\preamble{Tangi Migot}
66
77
8- [ ![ NLPModels 0.20.0 ] ( https://img.shields.io/badge/NLPModels-0.20.0 -8b0000?style=flat-square&labelColor=cb3c33 )] ( https://juliasmoothoptimizers.github.io /NLPModels.jl/stable/ )
9- [ ![ NLPModelsJuMP 0.12.1 ] ( https://img.shields.io/badge/NLPModelsJuMP-0.12.1 -8b0000?style=flat-square&labelColor=cb3c33 )] ( https://juliasmoothoptimizers.github.io /NLPModelsJuMP.jl/stable/ )
10- [ ![ ADNLPModels 0.7.0 ] ( https://img.shields.io/badge/ADNLPModels-0.7.0 -8b0000?style=flat-square&labelColor=cb3c33 )] ( https://juliasmoothoptimizers.github.io /ADNLPModels.jl/stable/ )
11- ![ JuMP 1.12.0 ] ( https://img.shields.io/badge/JuMP-1.12.0 -000?style=flat-square&labelColor=999 )
12- [ ![ OptimizationProblems 0.7.1 ] ( https://img.shields.io/badge/OptimizationProblems-0.7.1 -8b0000?style=flat-square&labelColor=cb3c33 )] ( https://juliasmoothoptimizers.github.io /OptimizationProblems.jl/stable/ )
8+ [ ![ NLPModels 0.21.3 ] ( https://img.shields.io/badge/NLPModels-0.21.3 -8b0000?style=flat-square&labelColor=cb3c33 )] ( https://jso.dev /NLPModels.jl/stable/ )
9+ [ ![ NLPModelsJuMP 0.13.2 ] ( https://img.shields.io/badge/NLPModelsJuMP-0.13.2 -8b0000?style=flat-square&labelColor=cb3c33 )] ( https://jso.dev /NLPModelsJuMP.jl/stable/ )
10+ [ ![ ADNLPModels 0.8.7 ] ( https://img.shields.io/badge/ADNLPModels-0.8.7 -8b0000?style=flat-square&labelColor=cb3c33 )] ( https://jso.dev /ADNLPModels.jl/stable/ )
11+ ![ JuMP 1.23.2 ] ( https://img.shields.io/badge/JuMP-1.23.2 -000?style=flat-square&labelColor=999 )
12+ [ ![ OptimizationProblems 0.9.0 ] ( https://img.shields.io/badge/OptimizationProblems-0.9.0 -8b0000?style=flat-square&labelColor=cb3c33 )] ( https://jso.dev /OptimizationProblems.jl/stable/ )
1313
1414
1515
@@ -26,7 +26,7 @@ length(problems)
2626```
2727
2828``` plaintext
29- 288
29+ 372
3030```
3131
3232
@@ -39,14 +39,14 @@ jump_model = OptimizationProblems.PureJuMP.zangwil3()
3939
4040``` plaintext
4141A JuMP Model
42- Minimization problem with:
43- Variables: 3
44- Objective function type: Nonlinear
45- `JuMP.AffExpr`-in-`MathOptInterface.EqualTo{Float64}` : 3 constraints
46- Model mode: AUTOMATIC
47- CachingOptimizer state: NO_OPTIMIZER
48- Solver name: No optimizer attached.
49- Names registered in the model: constr1, constr2, constr3, x
42+ ├ solver: none
43+ ├ objective_sense: MIN_SENSE
44+ │ └ objective_function_type: JuMP.AffExpr
45+ ├ num_variables : 3
46+ ├ num_constraints: 3
47+ │ └ JuMP.AffExpr in MOI.EqualTo{Float64}: 3
48+ └ Names registered in the model
49+ └ : constr1, : constr2, : constr3, : x
5050```
5151
5252
@@ -59,7 +59,7 @@ length(var_problems)
5959```
6060
6161``` plaintext
62- 94
62+ 95
6363```
6464
6565
@@ -72,13 +72,13 @@ jump_model_12 = OptimizationProblems.PureJuMP.woods(n=12)
7272
7373``` plaintext
7474A JuMP Model
75- Minimization problem with:
76- Variables: 12
77- Objective function type: Nonlinear
78- Model mode: AUTOMATIC
79- CachingOptimizer state: NO_OPTIMIZER
80- Solver name: No optimizer attached.
81- Names registered in the model: x
75+ ├ solver: none
76+ ├ objective_sense: MIN_SENSE
77+ │ └ objective_function_type: JuMP.NonlinearExpr
78+ ├ num_variables: 12
79+ ├ num_constraints: 0
80+ └ Names registered in the model
81+ └ : x
8282```
8383
8484
@@ -89,13 +89,13 @@ jump_model_120 = OptimizationProblems.PureJuMP.woods(n=120)
8989
9090``` plaintext
9191A JuMP Model
92- Minimization problem with:
93- Variables: 120
94- Objective function type: Nonlinear
95- Model mode: AUTOMATIC
96- CachingOptimizer state: NO_OPTIMIZER
97- Solver name: No optimizer attached.
98- Names registered in the model: x
92+ ├ solver: none
93+ ├ objective_sense: MIN_SENSE
94+ │ └ objective_function_type: JuMP.NonlinearExpr
95+ ├ num_variables: 120
96+ ├ num_constraints: 0
97+ └ Names registered in the model
98+ └ : x
9999```
100100
101101
@@ -134,7 +134,7 @@ length(problems)
134134```
135135
136136``` plaintext
137- 288
137+ 372
138138```
139139
140140
@@ -151,8 +151,8 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
151151 ForwardDiffADHvprod,
152152 ForwardDiffADJprod,
153153 ForwardDiffADJtprod,
154- ForwardDiffADJacobian ,
155- ForwardDiffADHessian ,
154+ SparseADJacobian ,
155+ SparseADHessian ,
156156 ForwardDiffADGHjvprod,
157157}
158158 Problem name: zangwil3
@@ -163,7 +163,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
163163 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
164164 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ████████████████████ 3
165165 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
166- nnzh: ( 0 .00% sparsity) 6 linear: ████████████████████ 3
166+ nnzh: (100 .00% sparsity) 0 linear: ████████████████████ 3
167167 nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
168168 nnzj: ( 0.00% sparsity) 9
169169
@@ -192,7 +192,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
192192 EmptyADbackend,
193193 EmptyADbackend,
194194 EmptyADbackend,
195- ForwardDiffADHessian ,
195+ SparseADHessian ,
196196 EmptyADbackend,
197197}
198198 Problem name: woods
@@ -203,7 +203,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
203203 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
204204 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
205205 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
206- nnzh: ( 0.00 % sparsity) 78 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
206+ nnzh: ( 73.08 % sparsity) 21 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
207207 nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
208208 nnzj: (------% sparsity)
209209
@@ -230,7 +230,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
230230 EmptyADbackend,
231231 EmptyADbackend,
232232 EmptyADbackend,
233- ForwardDiffADHessian ,
233+ SparseADHessian ,
234234 EmptyADbackend,
235235}
236236 Problem name: woods
@@ -241,7 +241,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
241241 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
242242 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
243243 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
244- nnzh: ( 0.00 % sparsity) 7260 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
244+ nnzh: ( 97.11 % sparsity) 210 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
245245 nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
246246 nnzj: (------% sparsity)
247247
@@ -258,9 +258,9 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
258258
259259
260260
261- One of the advantages of these problems is that they are type-stable. Indeed, one can specify the output type with the keyword ` type ` as follows.
261+ One of the advantages of these problems is that they are type-stable. Indeed, one can specify the output type with the keyword ` type ` as follows. Note that in version < 0.8 the argument was ` type=Val(DataType) ` .
262262``` julia
263- nlp16_12 = OptimizationProblems. ADNLPProblems. woods (n= 12 , type= Val ( Float16) )
263+ nlp16_12 = OptimizationProblems. ADNLPProblems. woods (n= 12 , type= Float16)
264264```
265265
266266``` plaintext
@@ -270,7 +270,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
270270 EmptyADbackend,
271271 EmptyADbackend,
272272 EmptyADbackend,
273- ForwardDiffADHessian ,
273+ SparseADHessian ,
274274 EmptyADbackend,
275275}
276276 Problem name: woods
@@ -281,7 +281,7 @@ ADNLPModel - Model with automatic differentiation backend ADModelBackend{
281281 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
282282 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
283283 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
284- nnzh: ( 0.00 % sparsity) 78 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
284+ nnzh: ( 73.08 % sparsity) 21 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
285285 nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
286286 nnzj: (------% sparsity)
287287
0 commit comments