|
| 1 | +export BNDROSENBROCK |
| 2 | + |
| 3 | +""" |
| 4 | + nls = BNDROSENBROCK() |
| 5 | +
|
| 6 | +## Rosenbrock function in nonlinear least squares format with bound constraints. |
| 7 | +
|
| 8 | +```math |
| 9 | +\\begin{aligned} |
| 10 | +\\min \\quad & \\tfrac{1}{2}\\| F(x) \\|^2 |
| 11 | +\\text{s. to} \\quad & -1 \\leq x_1 \\leq 0.8 \\\\ |
| 12 | +& -2 \\leq x_2 \\leq 2 |
| 13 | +\\end{aligned} |
| 14 | +``` |
| 15 | +where |
| 16 | +```math |
| 17 | +F(x) = \\begin{bmatrix} |
| 18 | +1 - x_1 \\\\ |
| 19 | +10 (x_2 - x_1^2) |
| 20 | +\\end{bmatrix}. |
| 21 | +``` |
| 22 | +
|
| 23 | +Starting point: `[-1.2; 1]`. |
| 24 | +""" |
| 25 | +mutable struct BNDROSENBROCK{T, S} <: AbstractNLSModel{T, S} |
| 26 | + meta::NLPModelMeta{T, S} |
| 27 | + nls_meta::NLSMeta{T, S} |
| 28 | + counters::NLSCounters |
| 29 | +end |
| 30 | + |
| 31 | +function BNDROSENBROCK(::Type{T}) where {T} |
| 32 | + meta = NLPModelMeta{T, Vector{T}}(2, x0 = T[-1.2; 1], lvar = T[-1; -2], uvar = T[0.8; 2], name = "BNDROSENBROCK_manual") |
| 33 | + nls_meta = NLSMeta{T, Vector{T}}(2, 2, nnzj = 3, nnzh = 1) |
| 34 | + |
| 35 | + return BNDROSENBROCK(meta, nls_meta, NLSCounters()) |
| 36 | +end |
| 37 | +BNDROSENBROCK() = BNDROSENBROCK(Float64) |
| 38 | + |
| 39 | +function NLPModels.residual!(nls::BNDROSENBROCK, x::AbstractVector, Fx::AbstractVector) |
| 40 | + @lencheck 2 x Fx |
| 41 | + increment!(nls, :neval_residual) |
| 42 | + Fx[1] = 1 - x[1] |
| 43 | + Fx[2] = 10 * (x[2] - x[1]^2) |
| 44 | + return Fx |
| 45 | +end |
| 46 | + |
| 47 | +# Jx = [-1 0; -20x₁ 10] |
| 48 | +function NLPModels.jac_structure_residual!( |
| 49 | + nls::BNDROSENBROCK, |
| 50 | + rows::AbstractVector{<:Integer}, |
| 51 | + cols::AbstractVector{<:Integer}, |
| 52 | +) |
| 53 | + @lencheck 3 rows cols |
| 54 | + rows[1] = 1 |
| 55 | + cols[1] = 1 |
| 56 | + rows[2] = 2 |
| 57 | + cols[2] = 1 |
| 58 | + rows[3] = 2 |
| 59 | + cols[3] = 2 |
| 60 | + return rows, cols |
| 61 | +end |
| 62 | + |
| 63 | +function NLPModels.jac_coord_residual!(nls::BNDROSENBROCK, x::AbstractVector, vals::AbstractVector) |
| 64 | + @lencheck 2 x |
| 65 | + @lencheck 3 vals |
| 66 | + increment!(nls, :neval_jac_residual) |
| 67 | + vals[1] = -1 |
| 68 | + vals[2] = -20x[1] |
| 69 | + vals[3] = 10 |
| 70 | + return vals |
| 71 | +end |
| 72 | + |
| 73 | +function NLPModels.jprod_residual!( |
| 74 | + nls::BNDROSENBROCK, |
| 75 | + x::AbstractVector, |
| 76 | + v::AbstractVector, |
| 77 | + Jv::AbstractVector, |
| 78 | +) |
| 79 | + @lencheck 2 x v Jv |
| 80 | + increment!(nls, :neval_jprod_residual) |
| 81 | + Jv[1] = -v[1] |
| 82 | + Jv[2] = -20 * x[1] * v[1] + 10 * v[2] |
| 83 | + return Jv |
| 84 | +end |
| 85 | + |
| 86 | +function NLPModels.jtprod_residual!( |
| 87 | + nls::BNDROSENBROCK, |
| 88 | + x::AbstractVector, |
| 89 | + v::AbstractVector, |
| 90 | + Jtv::AbstractVector, |
| 91 | +) |
| 92 | + @lencheck 2 x v Jtv |
| 93 | + increment!(nls, :neval_jtprod_residual) |
| 94 | + Jtv[1] = -v[1] - 20 * x[1] * v[2] |
| 95 | + Jtv[2] = 10 * v[2] |
| 96 | + return Jtv |
| 97 | +end |
| 98 | + |
| 99 | +function NLPModels.hess_structure_residual!( |
| 100 | + nls::BNDROSENBROCK, |
| 101 | + rows::AbstractVector{<:Integer}, |
| 102 | + cols::AbstractVector{<:Integer}, |
| 103 | +) |
| 104 | + @lencheck 1 rows cols |
| 105 | + rows[1] = 1 |
| 106 | + cols[1] = 1 |
| 107 | + return rows, cols |
| 108 | +end |
| 109 | + |
| 110 | +function NLPModels.hess_coord_residual!( |
| 111 | + nls::BNDROSENBROCK, |
| 112 | + x::AbstractVector, |
| 113 | + v::AbstractVector, |
| 114 | + vals::AbstractVector, |
| 115 | +) |
| 116 | + @lencheck 2 x v |
| 117 | + @lencheck 1 vals |
| 118 | + increment!(nls, :neval_hess_residual) |
| 119 | + vals[1] = -20v[2] |
| 120 | + return vals |
| 121 | +end |
| 122 | + |
| 123 | +function NLPModels.hprod_residual!( |
| 124 | + nls::BNDROSENBROCK, |
| 125 | + x::AbstractVector, |
| 126 | + i::Int, |
| 127 | + v::AbstractVector, |
| 128 | + Hiv::AbstractVector, |
| 129 | +) |
| 130 | + @lencheck 2 x v Hiv |
| 131 | + increment!(nls, :neval_hprod_residual) |
| 132 | + if i == 2 |
| 133 | + Hiv[1] = -20v[1] |
| 134 | + Hiv[2] = zero(eltype(x)) |
| 135 | + else |
| 136 | + Hiv .= zero(eltype(x)) |
| 137 | + end |
| 138 | + return Hiv |
| 139 | +end |
| 140 | + |
| 141 | +function NLPModels.hess_structure!(nls::BNDROSENBROCK, rows::AbstractVector{Int}, cols::AbstractVector{Int}) |
| 142 | + @lencheck 3 rows cols |
| 143 | + n = nls.meta.nvar |
| 144 | + k = 0 |
| 145 | + for j = 1:n, i = j:n |
| 146 | + k += 1 |
| 147 | + rows[k] = i |
| 148 | + cols[k] = j |
| 149 | + end |
| 150 | + return rows, cols |
| 151 | +end |
| 152 | + |
| 153 | +function NLPModels.hess_coord!( |
| 154 | + nls::BNDROSENBROCK, |
| 155 | + x::AbstractVector{T}, |
| 156 | + vals::AbstractVector; |
| 157 | + obj_weight = one(T), |
| 158 | +) where {T} |
| 159 | + @lencheck 2 x |
| 160 | + @lencheck 3 vals |
| 161 | + vals[1] = T(1) - 200 * x[2] + 600 * x[1]^2 |
| 162 | + vals[2] = -200 * x[1] |
| 163 | + vals[3] = T(100) |
| 164 | + vals .*= obj_weight |
| 165 | + return vals |
| 166 | +end |
| 167 | + |
| 168 | +function NLPModels.hprod!( |
| 169 | + nls::BNDROSENBROCK, |
| 170 | + x::AbstractVector{T}, |
| 171 | + v::AbstractVector{T}, |
| 172 | + Hv::AbstractVector{T}; |
| 173 | + obj_weight = one(T), |
| 174 | +) where {T} |
| 175 | + @lencheck 2 x v Hv |
| 176 | + increment!(nls, :neval_hprod) |
| 177 | + Hv[1] = obj_weight * ((T(1) - 200 * x[2] + 600 * x[1]^2) * v[1] - 200 * x[1] * v[2]) |
| 178 | + Hv[2] = obj_weight * (-200 * x[1] * v[1] + T(100) * v[2]) |
| 179 | + return Hv |
| 180 | +end |
0 commit comments