@@ -5,12 +5,7 @@ function genbroydenb(; use_nls::Bool = false, kwargs...)
55 return genbroydenb (Val (model); kwargs... )
66end
77
8- function genbroydenb (
9- :: Val{:nlp} ;
10- n:: Int = default_nvar,
11- type:: Type{T} = Float64,
12- kwargs... ,
13- ) where {T}
8+ function genbroydenb (:: Val{:nlp} ; n:: Int = default_nvar, type:: Type{T} = Float64, kwargs... ) where {T}
149 p = 7 // 3
1510 function f (x; n = length (x))
1611 s = zero (T)
@@ -26,22 +21,18 @@ function genbroydenb(
2621 end
2722 return s
2823 end
29- x0 = fill (- one (T), n)
24+ x0 = Vector {T} (undef, n)
25+ fill! (x0, - one (T))
3026 return ADNLPModels. ADNLPModel (f, x0, name = " genbroydenb" , minimize = true ; kwargs... )
3127end
3228
33- function genbroydenb (
34- :: Val{:nls} ;
35- n:: Int = default_nvar,
36- type:: Type{T} = Float64,
37- kwargs... ,
38- ) where {T}
29+ function genbroydenb (:: Val{:nls} ; n:: Int = default_nvar, type:: Type{T} = Float64, kwargs... ) where {T}
3930 p = 7 // 6
4031 function F! (r, x)
4132 m = length (x)
4233 @inbounds for i = 1 : m
4334 diag = (2 + 5 * x[i]^ 2 ) * x[i] + 1
44- neigh = 0
35+ neigh = zero (T)
4536 for j = max (1 , i - 5 ): min (m, i + 1 )
4637 if j != i
4738 neigh += x[j] * (1 + x[j])
@@ -52,6 +43,9 @@ function genbroydenb(
5243 end
5344 return r
5445 end
55- x0 = fill (- 1 , n)
46+
47+ x0 = Vector {T} (undef, n)
48+ fill! (x0, - one (T))
49+
5650 return ADNLPModels. ADNLSModel! (F!, x0, n, name = " genbroydenb-nls" ; kwargs... )
5751end
0 commit comments