@@ -27,7 +27,7 @@ abstract type AbstractQuadraticModel{T, S} <: AbstractNLPModel{T, S} end
27
27
qp = QuadraticModel(c, Hrows, Hcols, Hvals; Arows = Arows, Acols = Acols, Avals = Avals,
28
28
lcon = lcon, ucon = ucon, lvar = lvar, uvar = uvar, sortcols = false)
29
29
30
- qp = QuadraticModel(c, H; A = A, lcon = lcon, ucon = ucon, lvar = lvar, uvar = uvar, coo_matrices = true )
30
+ qp = QuadraticModel(c, H; A = A, lcon = lcon, ucon = ucon, lvar = lvar, uvar = uvar)
31
31
32
32
Create a Quadratic model ``min ~\\ tfrac{1}{2} x^T H x + c^T x + c_0`` with optional bounds
33
33
`lvar ≦ x ≦ uvar` and optional linear constraints `lcon ≦ Ax ≦ ucon`.
@@ -370,7 +370,7 @@ function NLPModels.jac_structure!(
370
370
qp:: QuadraticModel{T, S, M1, M2} ,
371
371
rows:: AbstractVector{<:Integer} ,
372
372
cols:: AbstractVector{<:Integer} ,
373
- ) where {T, S, M1, M2 <: DenseMatrix }
373
+ ) where {T, S, M1, M2 <: Matrix }
374
374
count = 1
375
375
for j= 1 : qp. meta. nvar
376
376
for i= 1 : qp. meta. ncon
@@ -406,7 +406,7 @@ function NLPModels.jac_coord!(
406
406
qp:: QuadraticModel{T, S, M1, M2} ,
407
407
x:: AbstractVector ,
408
408
vals:: AbstractVector
409
- ) where {T, S, M1, M2 <: DenseMatrix }
409
+ ) where {T, S, M1, M2 <: Matrix }
410
410
NLPModels. increment! (qp, :neval_jac )
411
411
count = 1
412
412
for j= 1 : qp. meta. nvar
0 commit comments