Skip to content

Commit 97f75be

Browse files
geoffroylecontedpo
authored andcommitted
🤖 Format .jl files
1 parent aa31e60 commit 97f75be

File tree

3 files changed

+19
-16
lines changed

3 files changed

+19
-16
lines changed

src/linalg_utils.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
import SparseArrays.nnz
22

33
SparseArrays.nnz(M::DenseMatrix) = *(size(M)...)
4-
SparseArrays.nnz(M::Diagonal{T, <: DenseVector{T}}) where T = size(M, 1)
5-
SparseArrays.nnz(M::SymTridiagonal{T, <: DenseVector{T}}) where T = 2 * size(M, 1) - 1
6-
function SparseArrays.nnz(M::Symmetric{T, <: DenseMatrix{T}}) where T
4+
SparseArrays.nnz(M::Diagonal{T, <:DenseVector{T}}) where {T} = size(M, 1)
5+
SparseArrays.nnz(M::SymTridiagonal{T, <:DenseVector{T}}) where {T} = 2 * size(M, 1) - 1
6+
function SparseArrays.nnz(M::Symmetric{T, <:DenseMatrix{T}}) where {T}
77
n = size(M, 1)
88
return n * (n + 1) / 2
9-
end
9+
end

src/presolve/presolve.jl

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
include("remove_ifix.jl")
22

3-
mutable struct PresolvedQuadraticModel{T, S, D <: AbstractQPData{T, S}} <: AbstractQuadraticModel{T, S}
3+
mutable struct PresolvedQuadraticModel{T, S, D <: AbstractQPData{T, S}} <:
4+
AbstractQuadraticModel{T, S}
45
meta::NLPModelMeta{T, S}
56
counters::Counters
67
data::D

src/qpmodel.jl

Lines changed: 13 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -13,14 +13,15 @@ mutable struct QPDataCOO{T, S} <: AbstractQPData{T, S}
1313
Avals::S
1414
end
1515

16-
mutable struct QPDataDense{T, S, M1 <: AbstractMatrix{T}, M2 <: AbstractMatrix{T}} <: AbstractQPData{T, S}
16+
mutable struct QPDataDense{T, S, M1 <: AbstractMatrix{T}, M2 <: AbstractMatrix{T}} <:
17+
AbstractQPData{T, S}
1718
c0::T # constant term in objective
1819
c::S # linear term
1920
H::M1
2021
A::M2
2122
end
2223

23-
function get_QPDataCOO(c0::T, c ::S, H::SparseMatrixCSC{T}, A::AbstractMatrix{T}) where {T, S}
24+
function get_QPDataCOO(c0::T, c::S, H::SparseMatrixCSC{T}, A::AbstractMatrix{T}) where {T, S}
2425
ncon, nvar = size(A)
2526
tril!(H)
2627
nnzh, Hrows, Hcols, Hvals = nnz(H), findnz(H)...
@@ -36,7 +37,8 @@ function get_QPDataCOO(c0::T, c ::S, H::SparseMatrixCSC{T}, A::AbstractMatrix{T}
3637
return data, nnzh, nnzj
3738
end
3839

39-
get_QPDataCOO(c0::T, c :: S, H, A::AbstractMatrix{T}) where {T, S} = get_QPDataCOO(c0, c, sparse(H), A)
40+
get_QPDataCOO(c0::T, c::S, H, A::AbstractMatrix{T}) where {T, S} =
41+
get_QPDataCOO(c0, c, sparse(H), A)
4042

4143
abstract type AbstractQuadraticModel{T, S} <: AbstractNLPModel{T, S} end
4244

@@ -273,8 +275,8 @@ function NLPModels.hess_structure!(
273275
else
274276
nvar = qp.meta.nvar
275277
idx = 1
276-
for j in 1:nvar
277-
for i in j:nvar
278+
for j = 1:nvar
279+
for i = j:nvar
278280
rows[idx] = i
279281
cols[idx] = j
280282
idx += 1
@@ -296,8 +298,8 @@ function NLPModels.hess_coord!(
296298
else
297299
nvar = qp.meta.nvar
298300
idx = 1
299-
for j in 1:nvar
300-
for i in j:nvar
301+
for j = 1:nvar
302+
for i = j:nvar
301303
vals[idx] = (i j) ? obj_weight * qp.data.H[i, j] : zero(T)
302304
idx += 1
303305
end
@@ -324,10 +326,10 @@ function NLPModels.jac_structure!(
324326
cols .= qp.data.Acols
325327
else
326328
nvar, ncon = qp.meta.nvar, qp.meta.ncon
327-
for j in 1:nvar
328-
for i in 1:ncon
329-
rows[i + (j-1) * ncon] = i
330-
cols[i + (j-1) * ncon] = j
329+
for j = 1:nvar
330+
for i = 1:ncon
331+
rows[i + (j - 1) * ncon] = i
332+
cols[i + (j - 1) * ncon] = j
331333
end
332334
end
333335
end

0 commit comments

Comments
 (0)