@@ -13,14 +13,15 @@ mutable struct QPDataCOO{T, S} <: AbstractQPData{T, S}
13
13
Avals:: S
14
14
end
15
15
16
- mutable struct QPDataDense{T, S, M1 <: AbstractMatrix{T} , M2 <: AbstractMatrix{T} } <: AbstractQPData{T, S}
16
+ mutable struct QPDataDense{T, S, M1 <: AbstractMatrix{T} , M2 <: AbstractMatrix{T} } < :
17
+ AbstractQPData{T, S}
17
18
c0:: T # constant term in objective
18
19
c:: S # linear term
19
20
H:: M1
20
21
A:: M2
21
22
end
22
23
23
- function get_QPDataCOO (c0:: T , c :: S , H:: SparseMatrixCSC{T} , A:: AbstractMatrix{T} ) where {T, S}
24
+ function get_QPDataCOO (c0:: T , c:: S , H:: SparseMatrixCSC{T} , A:: AbstractMatrix{T} ) where {T, S}
24
25
ncon, nvar = size (A)
25
26
tril! (H)
26
27
nnzh, Hrows, Hcols, Hvals = nnz (H), findnz (H)...
@@ -36,7 +37,8 @@ function get_QPDataCOO(c0::T, c ::S, H::SparseMatrixCSC{T}, A::AbstractMatrix{T}
36
37
return data, nnzh, nnzj
37
38
end
38
39
39
- get_QPDataCOO (c0:: T , c :: S , H, A:: AbstractMatrix{T} ) where {T, S} = get_QPDataCOO (c0, c, sparse (H), A)
40
+ get_QPDataCOO (c0:: T , c:: S , H, A:: AbstractMatrix{T} ) where {T, S} =
41
+ get_QPDataCOO (c0, c, sparse (H), A)
40
42
41
43
abstract type AbstractQuadraticModel{T, S} <: AbstractNLPModel{T, S} end
42
44
@@ -273,8 +275,8 @@ function NLPModels.hess_structure!(
273
275
else
274
276
nvar = qp. meta. nvar
275
277
idx = 1
276
- for j in 1 : nvar
277
- for i in j: nvar
278
+ for j = 1 : nvar
279
+ for i = j: nvar
278
280
rows[idx] = i
279
281
cols[idx] = j
280
282
idx += 1
@@ -296,8 +298,8 @@ function NLPModels.hess_coord!(
296
298
else
297
299
nvar = qp. meta. nvar
298
300
idx = 1
299
- for j in 1 : nvar
300
- for i in j: nvar
301
+ for j = 1 : nvar
302
+ for i = j: nvar
301
303
vals[idx] = (i ≥ j) ? obj_weight * qp. data. H[i, j] : zero (T)
302
304
idx += 1
303
305
end
@@ -324,10 +326,10 @@ function NLPModels.jac_structure!(
324
326
cols .= qp. data. Acols
325
327
else
326
328
nvar, ncon = qp. meta. nvar, qp. meta. ncon
327
- for j in 1 : nvar
328
- for i in 1 : ncon
329
- rows[i + (j- 1 ) * ncon] = i
330
- cols[i + (j- 1 ) * ncon] = j
329
+ for j = 1 : nvar
330
+ for i = 1 : ncon
331
+ rows[i + (j - 1 ) * ncon] = i
332
+ cols[i + (j - 1 ) * ncon] = j
331
333
end
332
334
end
333
335
end
0 commit comments