|
| 1 | +export R2DH |
| 2 | + |
| 3 | +""" |
| 4 | + R2DH(nlp, h, options) |
| 5 | + R2DH(f, ∇f!, h, options, x0) |
| 6 | +
|
| 7 | +A first-order quadratic regularization method for the problem |
| 8 | +
|
| 9 | + min f(x) + h(x) |
| 10 | +
|
| 11 | +where f: ℝⁿ → ℝ has a Lipschitz-continuous gradient, and h: ℝⁿ → ℝ is |
| 12 | +lower semi-continuous, proper and prox-bounded. |
| 13 | +
|
| 14 | +About each iterate xₖ, a step sₖ is computed as a solution of |
| 15 | +
|
| 16 | + min φ(s; xₖ) + ψ(s; xₖ) |
| 17 | +
|
| 18 | +where φ(s ; xₖ) = f(xₖ) + ∇f(xₖ)ᵀs + ½ sᵀ (σₖ+Dₖ) s (if `summation = true`) and φ(s ; xₖ) = f(xₖ) + ∇f(xₖ)ᵀs + ½ sᵀ (σₖ+Dₖ) s (if `summation = false`) is a quadratic approximation of f about xₖ, |
| 19 | +ψ(s; xₖ) = h(xₖ + s), ‖⋅‖ is a user-defined norm, Dₖ is a diagonal Hessian approximation |
| 20 | +and σₖ > 0 is the regularization parameter. |
| 21 | +
|
| 22 | +### Arguments |
| 23 | +
|
| 24 | +* `nlp::AbstractDiagonalQNModel`: a smooth optimization problem |
| 25 | +* `h`: a regularizer such as those defined in ProximalOperators |
| 26 | +* `options::ROSolverOptions`: a structure containing algorithmic parameters |
| 27 | +* `x0::AbstractVector`: an initial guess (in the second calling form) |
| 28 | +
|
| 29 | +### Keyword Arguments |
| 30 | +
|
| 31 | +* `x0::AbstractVector`: an initial guess (in the first calling form: default = `nlp.meta.x0`) |
| 32 | +* `selected::AbstractVector{<:Integer}`: (default `1:length(x0)`). |
| 33 | +* `Bk`: initial diagonal Hessian approximation (default: `(one(R) / options.ν) * I`). |
| 34 | +* `summation`: boolean used to choose between the two versions of R2DH (see above, default : `true`). |
| 35 | +
|
| 36 | +The objective and gradient of `nlp` will be accessed. |
| 37 | +
|
| 38 | +In the second form, instead of `nlp`, the user may pass in |
| 39 | +
|
| 40 | +* `f` a function such that `f(x)` returns the value of f at x |
| 41 | +* `∇f!` a function to evaluate the gradient in place, i.e., such that `∇f!(g, x)` store ∇f(x) in `g` |
| 42 | +
|
| 43 | +### Return values |
| 44 | +
|
| 45 | +* `xk`: the final iterate |
| 46 | +* `Fobj_hist`: an array with the history of values of the smooth objective |
| 47 | +* `Hobj_hist`: an array with the history of values of the nonsmooth objective |
| 48 | +* `Complex_hist`: an array with the history of number of inner iterations. |
| 49 | +""" |
| 50 | +function R2DH( |
| 51 | + nlp::AbstractDiagonalQNModel{R, S}, |
| 52 | + h, |
| 53 | + options::ROSolverOptions{R}; |
| 54 | + kwargs..., |
| 55 | + ) where {R <: Real, S} |
| 56 | + kwargs_dict = Dict(kwargs...) |
| 57 | + x0 = pop!(kwargs_dict, :x0, nlp.meta.x0) |
| 58 | + xk, k, outdict = R2DH( |
| 59 | + x -> obj(nlp, x), |
| 60 | + (g, x) -> grad!(nlp, x, g), |
| 61 | + h, |
| 62 | + hess_op(nlp, x0), |
| 63 | + options, |
| 64 | + x0; |
| 65 | + kwargs..., |
| 66 | + ) |
| 67 | + ξ = outdict[:ξ] |
| 68 | + stats = GenericExecutionStats(nlp) |
| 69 | + set_status!(stats, outdict[:status]) |
| 70 | + set_solution!(stats, xk) |
| 71 | + set_objective!(stats, outdict[:fk] + outdict[:hk]) |
| 72 | + set_residuals!(stats, zero(eltype(xk)), ξ) |
| 73 | + set_iter!(stats, k) |
| 74 | + set_time!(stats, outdict[:elapsed_time]) |
| 75 | + set_solver_specific!(stats, :Fhist, outdict[:Fhist]) |
| 76 | + set_solver_specific!(stats, :Hhist, outdict[:Hhist]) |
| 77 | + set_solver_specific!(stats, :NonSmooth, outdict[:NonSmooth]) |
| 78 | + set_solver_specific!(stats, :SubsolverCounter, outdict[:Chist]) |
| 79 | + return stats |
| 80 | + end |
| 81 | + |
| 82 | +function R2DH( |
| 83 | + f::F, |
| 84 | + ∇f!::G, |
| 85 | + h::H, |
| 86 | + D::DQN, |
| 87 | + options::ROSolverOptions{R}, |
| 88 | + x0::AbstractVector{R}; |
| 89 | + Mmonotone::Int = 5, |
| 90 | + selected::AbstractVector{<:Integer} = 1:length(x0), |
| 91 | + summation::Bool = true, |
| 92 | + kwargs..., |
| 93 | +) where {F <: Function, G <: Function, H, R <: Real, DQN <: AbstractDiagonalQuasiNewtonOperator} |
| 94 | + start_time = time() |
| 95 | + elapsed_time = 0.0 |
| 96 | + ϵ = options.ϵa |
| 97 | + ϵr = options.ϵr |
| 98 | + neg_tol = options.neg_tol |
| 99 | + verbose = options.verbose |
| 100 | + maxIter = options.maxIter |
| 101 | + maxTime = options.maxTime |
| 102 | + σmin = options.σmin |
| 103 | + η1 = options.η1 |
| 104 | + η2 = options.η2 |
| 105 | + ν = options.ν |
| 106 | + γ = options.γ |
| 107 | + |
| 108 | + local l_bound, u_bound |
| 109 | + has_bnds = false |
| 110 | + for (key, val) in kwargs |
| 111 | + if key == :l_bound |
| 112 | + l_bound = val |
| 113 | + has_bnds = has_bnds || any(l_bound .!= R(-Inf)) |
| 114 | + elseif key == :u_bound |
| 115 | + u_bound = val |
| 116 | + has_bnds = has_bnds || any(u_bound .!= R(Inf)) |
| 117 | + end |
| 118 | + end |
| 119 | + |
| 120 | + if verbose == 0 |
| 121 | + ptf = Inf |
| 122 | + elseif verbose == 1 |
| 123 | + ptf = round(maxIter / 10) |
| 124 | + elseif verbose == 2 |
| 125 | + ptf = round(maxIter / 100) |
| 126 | + else |
| 127 | + ptf = 1 |
| 128 | + end |
| 129 | + |
| 130 | + # initialize parameters |
| 131 | + xk = copy(x0) |
| 132 | + hk = h(xk[selected]) |
| 133 | + if hk == Inf |
| 134 | + verbose > 0 && @info "R2DH: finding initial guess where nonsmooth term is finite" |
| 135 | + prox!(xk, h, x0, one(eltype(x0))) |
| 136 | + hk = h(xk[selected]) |
| 137 | + hk < Inf || error("prox computation must be erroneous") |
| 138 | + verbose > 0 && @debug "R2DH: found point where h has value" hk |
| 139 | + end |
| 140 | + hk == -Inf && error("nonsmooth term is not proper") |
| 141 | + |
| 142 | + xkn = similar(xk) |
| 143 | + s = zero(xk) |
| 144 | + ψ = has_bnds ? shifted(h, xk, l_bound - xk, u_bound - xk, selected) : shifted(h, xk) |
| 145 | + |
| 146 | + Fobj_hist = zeros(maxIter) |
| 147 | + Hobj_hist = zeros(maxIter) |
| 148 | + FHobj_hist = fill!(Vector{R}(undef, Mmonotone), R(-Inf)) |
| 149 | + Complex_hist = zeros(Int, maxIter) |
| 150 | + if verbose > 0 |
| 151 | + #! format: off |
| 152 | + @info @sprintf "%6s %8s %8s %7s %8s %7s %7s %7s %1s" "iter" "f(x)" "h(x)" "√ξ" "ρ" "σ" "‖x‖" "‖s‖" "" |
| 153 | + #! format: off |
| 154 | + end |
| 155 | + |
| 156 | + local ξ |
| 157 | + k = 0 |
| 158 | + σk = summation ? σmin : max(1 / ν, σmin) |
| 159 | + |
| 160 | + fk = f(xk) |
| 161 | + ∇fk = similar(xk) |
| 162 | + ∇f!(∇fk, xk) |
| 163 | + ∇fk⁻ = copy(∇fk) |
| 164 | + spectral_test = isa(D, SpectralGradient) |
| 165 | + D.d .= summation ? D.d .+ σk : D.d .* σk |
| 166 | + DNorm = norm(D.d, Inf) |
| 167 | + |
| 168 | + |
| 169 | + ν = 1 / DNorm |
| 170 | + mν∇fk = -ν * ∇fk |
| 171 | + sqrt_ξ_νInv = one(R) |
| 172 | + |
| 173 | + optimal = false |
| 174 | + tired = maxIter > 0 && k ≥ maxIter || elapsed_time > maxTime |
| 175 | + |
| 176 | + while !(optimal || tired) |
| 177 | + k = k + 1 |
| 178 | + elapsed_time = time() - start_time |
| 179 | + Fobj_hist[k] = fk |
| 180 | + Hobj_hist[k] = hk |
| 181 | + Mmonotone > 0 && (FHobj_hist[mod(k-1, Mmonotone) + 1] = fk + hk) |
| 182 | + |
| 183 | + D.d .= max.(D.d, eps(R)) |
| 184 | + |
| 185 | + |
| 186 | + # model with diagonal hessian |
| 187 | + φ(d) = ∇fk' * d + (d' * (D.d .* d)) / 2 |
| 188 | + mk(d) = φ(d) + ψ(d) |
| 189 | + |
| 190 | + if spectral_test |
| 191 | + prox!(s, ψ, mν∇fk, ν) |
| 192 | + else |
| 193 | + iprox!(s, ψ, ∇fk, D) |
| 194 | + end |
| 195 | + |
| 196 | + # iprox!(s, ψ, ∇fk, D) |
| 197 | + |
| 198 | + Complex_hist[k] += 1 |
| 199 | + xkn .= xk .+ s |
| 200 | + fkn = f(xkn) |
| 201 | + hkn = h(xkn[selected]) |
| 202 | + hkn == -Inf && error("nonsmooth term is not proper") |
| 203 | + |
| 204 | + fhmax = Mmonotone > 0 ? maximum(FHobj_hist) : fk + hk |
| 205 | + Δobj = fhmax - (fkn + hkn) + max(1, abs(fhmax)) * 10 * eps() |
| 206 | + Δmod = fhmax - (fk + mk(s)) + max(1, abs(hk)) * 10 * eps() |
| 207 | + ξ = hk - mk(s) + max(1, abs(hk)) * 10 * eps() |
| 208 | + sqrt_ξ_νInv = ξ ≥ 0 ? sqrt(ξ / ν) : sqrt(-ξ / ν) |
| 209 | + |
| 210 | + if ξ ≥ 0 && k == 1 |
| 211 | + ϵ += ϵr * sqrt_ξ_νInv # make stopping test absolute and relative |
| 212 | + end |
| 213 | + |
| 214 | + if (ξ < 0 && sqrt_ξ_νInv ≤ neg_tol) || (ξ ≥ 0 && sqrt_ξ_νInv < ϵ) |
| 215 | + # the current xk is approximately first-order stationary |
| 216 | + optimal = true |
| 217 | + continue |
| 218 | + end |
| 219 | + |
| 220 | + if (ξ ≤ 0 || isnan(ξ)) |
| 221 | + error("R2DH: failed to compute a step: ξ = $ξ") |
| 222 | + end |
| 223 | + |
| 224 | + ρk = Δobj / Δmod |
| 225 | + |
| 226 | + σ_stat = (η2 ≤ ρk < Inf) ? "↘" : (ρk < η1 ? "↗" : "=") |
| 227 | + |
| 228 | + if (verbose > 0) && (k % ptf == 0) |
| 229 | + #! format: off |
| 230 | + @info @sprintf "%6d %8.1e %8.1e %7.1e %8.1e %7.1e %7.1e %7.1e %1s" k fk hk sqrt_ξ_νInv ρk σk norm(xk) norm(s) σ_stat |
| 231 | + #! format: on |
| 232 | + end |
| 233 | + |
| 234 | + if η2 ≤ ρk < Inf |
| 235 | + σk = max(σk / γ, σmin) |
| 236 | + end |
| 237 | + |
| 238 | + if η1 ≤ ρk < Inf |
| 239 | + xk .= xkn |
| 240 | + has_bnds && set_bounds!(ψ, l_bound - xk, u_bound - xk) |
| 241 | + fk = fkn |
| 242 | + hk = hkn |
| 243 | + shift!(ψ, xk) |
| 244 | + ∇f!(∇fk, xk) |
| 245 | + push!(D, s, ∇fk - ∇fk⁻) # update QN operator |
| 246 | + DNorm = norm(D.d, Inf) |
| 247 | + ∇fk⁻ .= ∇fk |
| 248 | + end |
| 249 | + |
| 250 | + if ρk < η1 || ρk == Inf |
| 251 | + σk = σk * γ |
| 252 | + end |
| 253 | + |
| 254 | + D.d .= summation ? D.d .+ σk : D.d .* σk |
| 255 | + DNorm = norm(D.d, Inf) |
| 256 | + ν = 1 / DNorm |
| 257 | + |
| 258 | + tired = maxIter > 0 && k ≥ maxIter |
| 259 | + if !tired |
| 260 | + @. mν∇fk = -ν * ∇fk |
| 261 | + end |
| 262 | + end |
| 263 | + |
| 264 | + if verbose > 0 |
| 265 | + if k == 1 |
| 266 | + @info @sprintf "%6d %8.1e %8.1e" k fk hk |
| 267 | + elseif optimal |
| 268 | + #! format: off |
| 269 | + @info @sprintf "%6d %8.1e %8.1e %7.1e %8s %7.1e %7.1e %7.1e" k fk hk sqrt_ξ_νInv "" σk norm(xk) norm(s) |
| 270 | + #! format: on |
| 271 | + @info "R2DH: terminating with √(ξ/ν) = $(sqrt_ξ_νInv))" |
| 272 | + end |
| 273 | + end |
| 274 | + |
| 275 | + status = if optimal |
| 276 | + :first_order |
| 277 | + elseif elapsed_time > maxTime |
| 278 | + :max_time |
| 279 | + elseif tired |
| 280 | + :max_iter |
| 281 | + else |
| 282 | + :exception |
| 283 | + end |
| 284 | + outdict = Dict( |
| 285 | + :Fhist => Fobj_hist[1:k], |
| 286 | + :Hhist => Hobj_hist[1:k], |
| 287 | + :Chist => Complex_hist[1:k], |
| 288 | + :NonSmooth => h, |
| 289 | + :status => status, |
| 290 | + :fk => fk, |
| 291 | + :hk => hk, |
| 292 | + :ξ => ξ, |
| 293 | + :elapsed_time => elapsed_time, |
| 294 | + ) |
| 295 | + |
| 296 | + return xk, k, outdict |
| 297 | +end |
0 commit comments