@@ -128,7 +128,6 @@ For advanced usage, first define a solver "R2NSolver" to preallocate the memory
128128- `σk::T = eps(T)^(1 / 5)`: initial value of the regularization parameter;
129129- `η1::T = √√eps(T)`: successful iteration threshold;
130130- `η2::T = T(0.9)`: very successful iteration threshold;
131- - `ν::T = eps(T)^(1 / 5)`: inverse of the initial regularization parameter: ν = 1/σ;
132131- `γ::T = T(3)`: regularization parameter multiplier, σ := σ/γ when the iteration is very successful and σ := σγ when the iteration is unsuccessful;
133132- `θ::T = 1/(1 + eps(T)^(1 / 5))`: is the model decrease fraction with respect to the decrease of the Cauchy model;
134133- `m_monotone::Int = 1`: monotonicity parameter. By default, R2N is monotone but the non-monotone variant will be used if `m_monotone > 1`;
@@ -180,7 +179,6 @@ function R2N(
180179 σk = options. σk,
181180 η1 = options. η1,
182181 η2 = options. η2,
183- ν = options. ν,
184182 γ = options. γ,
185183 sub_kwargs = sub_kwargs;
186184 kwargs_dict... ,
@@ -214,7 +212,6 @@ function SolverCore.solve!(
214212 σmin:: T = eps (T),
215213 η1:: T = √√ eps (T),
216214 η2:: T = T (0.9 ),
217- ν:: T = eps (T)^ (1 / 5 ),
218215 γ:: T = T (3 ),
219216 β:: T = 1 / eps (T),
220217 θ:: T = 1 / (1 + eps (T)^ (1 / 5 )),
@@ -355,16 +352,12 @@ function SolverCore.solve!(
355352
356353 solver. subpb. model. σ = σk
357354 isa (solver. subsolver, R2DHSolver) && (solver. subsolver. D. d[1 ] = 1 / ν₁)
358- sub_ν = isa (solver. subsolver, R2DHSolver) ? 1 / σk : ν₁
359- solve! (
360- solver. subsolver,
361- solver. subpb,
362- solver. substats;
363- x = s1,
364- atol = sub_atol,
365- ν = sub_ν,
366- sub_kwargs... ,
367- )
355+ if isa (solver. subsolver, R2Solver) # FIXME
356+ sub_kwargs[:ν ] = ν₁
357+ else
358+ sub_kwargs[:σk ] = σk
359+ end
360+ solve! (solver. subsolver, solver. subpb, solver. substats; x = s1, atol = sub_atol, sub_kwargs... )
368361
369362 s .= solver. substats. solution
370363
0 commit comments