You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/R2N.jl
+4-4Lines changed: 4 additions & 4 deletions
Original file line number
Diff line number
Diff line change
@@ -130,7 +130,7 @@ For advanced usage, first define a solver "R2NSolver" to preallocate the memory
130
130
- `η2::T = T(0.9)`: very successful iteration threshold;
131
131
- `ν::T = eps(T)^(1 / 5)`: inverse of the initial regularization parameter: ν = 1/σ;
132
132
- `γ::T = T(3)`: regularization parameter multiplier, σ := σ/γ when the iteration is very successful and σ := σγ when the iteration is unsuccessful.
133
-
- `θ::T = eps(T)^(1/5)`: is the model decrease fraction with respect to the decrease of the Cauchy model.
133
+
- `θ::T = 1/(1 + eps(T)^(1 / 5))`: is the model decrease fraction with respect to the decrease of the Cauchy model.
134
134
- `m_monotone::Int = 1`: monotonicity parameter. By default, R2DH is monotone but the non-monotone variant will be used if `m_monotone > 1`
135
135
136
136
The algorithm stops either when `√(ξₖ/νₖ) < atol + rtol*√(ξ₀/ν₀) ` or `ξₖ < 0` and `√(-ξₖ/νₖ) < neg_tol` where ξₖ := f(xₖ) + h(xₖ) - φ(sₖ; xₖ) - ψ(sₖ; xₖ), and √(ξₖ/νₖ) is a stationarity measure.
@@ -212,7 +212,7 @@ function SolverCore.solve!(
212
212
ν::T= eps(T)^(1/5),
213
213
γ::T= T(3),
214
214
β::T=1/ eps(T),
215
-
θ::T= eps(T)^(1/5),
215
+
θ::T=1/(1+eps(T)^(1/5)),
216
216
kwargs...
217
217
) where{T, V, G}
218
218
reset!(stats)
@@ -289,7 +289,7 @@ function SolverCore.solve!(
289
289
290
290
λmax = opnorm(solver.subpb.model.B)
291
291
292
-
ν₁ =1/ ((λmax + σk) * (1+ θ))
292
+
ν₁ =θ/ (λmax + σk)
293
293
ν_sub = ν₁
294
294
295
295
sqrt_ξ1_νInv = one(T)
@@ -435,7 +435,7 @@ function SolverCore.solve!(
435
435
σk = σk * γ
436
436
end
437
437
438
-
ν₁ =1/ ((λmax + σk) * (1+ θ))
438
+
ν₁ =θ/ (λmax + σk)
439
439
m_monotone >1&& (m_fh_hist[stats.iter%(m_monotone -1) +1] = fk + hk)
0 commit comments